عضو شوید


نام کاربری
رمز عبور

:: فراموشی رمز عبور؟

عضویت سریع

نام کاربری
رمز عبور
تکرار رمز
ایمیل
کد تصویری
براي اطلاع از آپيدت شدن وبلاگ در خبرنامه وبلاگ عضو شويد تا جديدترين مطالب به ايميل شما ارسال شود



تاریخ : یک شنبه 13 مرداد 1398
بازدید : 57
نویسنده : افزیر
رئیس کمیسیون معماری و شهرسازی شورای شهر تهران آخرین وضعیت ایمن سازی بازار تهران را تشریح کرد.
محمد سالاری در گفتگو با خبرنگار مهر در خصوص آخرین وضعیت ایمنی بازار تهران گفت: یکی از نگرانی های جدی که هم در بین مسئولان شهری اعم از شورا و شهرداری و هم مسوولان دولتی در شهر تهران وجود دارد، عدم ایمنی بازار تهران است. 

وی ادامه داد: با توجه به مقیاس و جغرافیای گسترده ای و حجم قابل توجه واحدهای تجاری و تولیدی، متاسفانه طی دهه های گذشته به ایمن سازی بازار توجهی نشده و در حال حاضر وضعیت ایمنی بازار به شدت نابهنجار است. هم مجموعه سیم کشی ها و کابل های برقی که بدون رعایت اصول فنی در آنجا نگرانی ها افزایش پیدا کرده و هم شبکه های انتقال بقیه انشعابات، وضعیت بسیار خطرناکی برای این مکان ایجاد کرده است. 

سالاری یکی ازموانع اساسی که برای ساماندهی بازار وجود دارد را بهره برداری از واحدهای تجاری به صورت سرقفلی عنوان کرد و گفت: باتوجه به قانون سرقفلی که در کشور ما وجود دارد، صاحبان سرقفلی نگران هستند که اگر نسبت به تخلیه و مرمت و تعمیر کامل این واحدهای تجاری اقدام کنند، ممکن است مالکان سرقفلی ها براساس قانون موجود بتوانند واحدهای تجاری را پس بگیرند زیرا نوعی مداخله کامل محسوب می شود و براساس قانون اشکالاتی را برایشان ایجاد می کند. لذا به نظر می رسد که می بایستی در خصوص محدوده بازار تجدیدنظری در برخی از قوانین فرادست انجام شود تا صاحبان سرقفلی همراهی کامل را در این زمینه داشته باشند. 

بررسی های ما درخصوص ساختمان های اماکن عمومی ایمن سازی شده نشان می دهد، ساختمان هایی که ایمن سازی شده اند، علی رغم هزینه های قابل توجهی که برای صاحبان کسب و پیشه و صاحبان سرقفلی و مالکان این اماکن داشته، بعد از ایمن سازی کامل، مابه ازای مادی بسیار زیادی برایشان ایجاد شده است. آنها اذعان دارند که ساختمانی که به لحاظ قیمت مبلغش رقم مشخصی بوده، بعد از ایمن سازی و مقاوم سازی قیمت اش چند برابر شده است و اصلا قابل قیاس با آن هزینه های انجام شده نبوده است. 

این اتفاق می تواند در سامان دهی و ایمن سازی بازار تهران هم بیفتد، مشروط بر اینکه به لحاظ همان قوانین فرادست و مسائل حقوقی ما این اطمینان خاطر را به صاحبان سرقفلی بدهیم که همراهی لازم را در این خصوص داشته باشند. 

البته شورای اسلامی شهر تهران در این دوره اقداماتی را شروع کرده، جلساتی را به شکل مستمر و به صورت هفتگی و طی دو هفته خواهیم داشت که این جلسات را با حضور مدعوینی از سازمان ها، نهادها و ذی نفعان بازار برگزار می کنیم. 

سالاری با اشاره به گلایه های برخی شهروندان در خصوص ایمنی بازار حضرتی گفت: در این محدوده کلیسایی وجود دارد که درخواست های بسیار متعددی به ما رسیده که وضعیت ایمنی اش مناسب نیست. مسوولان هم در این مدت مثل شهروندان فقط دغدغه هایشان را مطرح می کنند و نهایتا بازدیدی را نهایتا انجام می دهند، ولی اتفاقی نمی افتد. این گلایه آنها درست است و به نظر می رسد که برای سامان دهی بازار تهران و این محدوده نیاز است به صورت غیررسمی شاهد شکل گیری یک مدیریت یکپارچه و منسجم شامل نهاد مدیریت شهری اعم از شورا و شهرداری، استان داری تهران، نهادها و دستگاه های خدمات رسان و به خصوص نهادهای امنیتی و حتی نهادهای ثبتی باشیم تا مجموع این دستگاه ها، تصمیم گیران و تصمیم سازان بتوانند به صورت یکپارچه این مشکلات را حل کنند. 

رئیس کمیسیون معماری و شهرسازی شورای شهر تهران گفت: می توان در سامان دهی بازار تهران به صورت پایلوت مدیریت یکپارچه شهری را نهادینه کرد و به سرانجام رساند. چراکه اگر در بازار تهران اتفاقی بیفتد، نه برای مدیریت شهری تهران که اساسا برای همه نتایج آن مخرب خواهد بود.


:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , سازه بتنی , سازه فولادی , پوشش ضد حریق , ,
تاریخ : سه شنبه 30 بهمن 1397
بازدید : 52
نویسنده : افزیر

 

12 مدرسه مقاوم سازی شده در خلخال به بهره برداری می رسد

خلخال – خبرگزاری مهر: فرماندار خلخال با اشاره به تلاش سازمان نوسازی اردبیل برای تکمیل پروژه های مدرسه سازی در این شهرستان گفت: در بحث مقاوم سازی هم اکنون 12 مدرسه در این شهرستان اجرا و تا فاصله زمانی مهرماه تا دی ماه به بهره برداری خواهد رسید.

هوشنگ محمدی در گفتگو با خبرنگار مهر با بیان اینکه این پروژه از سال گذشته و امسال آغاز شده است، اضافه کرد: از این تعداد پنج پروژه تا آغاز مدارس و قبل از مهرماه آماده تحویل و افتتاح خواهد شد.

وی با اشاره به آماده سازی و واگذاری دو مدرسه در خلخال، یک مورد در هشتجین و دو مورد در روستاهای خلخال طی مهرماه تصریح کرد: علاوه بر این پنج مدرسه، تلاش می شود فاز اول مدرسه خاقانی خلخال نیز تا مهرماه آماده بهره برداری شود.

فرماندار خلخال با بیان اینکه فاز دوم این پروژه مدرسه سازی نیز با سرمایه گذاری مطلوب تا آبان ماه سال جاری تکمیل خواهد شد، ادامه داد: سازمان تجهیز و نوسازی و بهسازی لرزه ای استان اردبیل برای تسریع در روند ساخت پنج مدرسه افتتاحی مهرماه و کمک به این طرح ها بالغ بر 1.5 میلیارد ریال ریال تخفیف داده است.

وی همچنین با اشاره به برخی از مدارس افتتاح شده این شهرستان یادآور شد: این مدارس طی سال های قبل به بهره برداری رسیده و فاقد حیاط بودند که با مساعدت و کمک خیرین استان و نیز ارائه اعتبارات لازم حیاط برخی از این مدارس نیز در خلخال اجرا می شود.

محمدی با اشاره به بازدید یکی از خیرین مدرسه ساز اردبیلی از این شهرستان طی هفته اخیر متذکر شد: در بازدید مقرر شد که حیاط مدرسه شبنه روزی "محدثه" خلخال توسط این خیر اردبیلی اجرا و تحویل شود.

وی با تاکید به روند مناسب ساخت مدرسه زینبیه در هشتجین تصریح کرد: مصمم هستیم این مدرسه را نیز تا مهرماه آماده بهره برداری کنیم، علاوه بر این شش در بحث مدرسه مقاوم سازی نیز تا اواخر پاییز آماده افتتاح خواهد شد.

فرماندار خلخال با اشاره به ساخت مدرسه شبانه روزی کلور به عنوان یکی از طرح های آموزشی اولویت دار منطقه عنوان کرد: ساخت این مدرسه به دلیل نبود مدرسه در مقطع دبیرستان در روستاهای این منطقه و بعد مسافت بسیار مهم بود که خوشبختانه هم اکنون با پیشرفت قابل توجه در حال اجرا است.

به گفته وی این مدرسه شبانه روزی هم اکنون 80 درصد پیشرفت فیزیکی داشته و تا 22 بهمن ماه امسال و همزمان با جشن های دهه فجر به افتتاح خواهد رسید.

این اظهارات در حالی است که فرماندار خلخال پیش از این در جلسه بررسی پروژه های عمرانی افتتاحی هفته دولت در اردبیل گفته بود که  مقاوم سازی مدارس بارها از سوی دستگاه اجرایی مرتبط در دستور کار پروژه های افتتاحی قرار می گیرد و نهایتا بدون فرجام به لیست افتتاح بعدی انتقال می یابد.

محمدی در این جلسه خواستار رسیدگی به پروژه های ساخت و ساز مدارس شده و تاکید کرده بود که در حال حاضر کمبود فضاهای آموزشی در شهرستان خلخال به دلیل بی توجهی به توسعه فضاهای فیزیکی تشدید شده است.



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , سازه بتنی , سازه فولادی , پوشش ضد حریق , ,
:: برچسب‌ها: الیاف کربن , مقاوم سازی , FRP , فیبر کربن , ,
تاریخ : سه شنبه 4 دی 1397
بازدید : 67
نویسنده : افزیر

 

گنبدکاووس - ایرنا - فرماندار مراوه تپه در منتهی الیه شرق استان گلستان از غیرمقاوم و در معرض خطر بودن هشت هزار و 349واحد مسکونی در روستاهای این شهرستان مرزی خبر داد.

به گزارش خبرنگارایرنا، یازمراد کوسه غراوی روز سه شنبه در جلسه روز ایمنی و زلزله که در فرمانداری مراوه تپه برگزار شده بود، با بیان اینکه بیش از 13 هزار واحد مسکونی دراین شهرستان وجود دارد، ادامه داد: اجرای مقاوم سازی بیش از هشت هزار واحد مسکونی دراین شهرستان با توجه به عدم توان بانک های عامل در پرداخت تسهیلات مسکن بخاطر وجود دستور العمل ها وبخشنامه های مختلف ، ده ها سال طول می کشد.
فرماندار مراوه تپه افزود : اکثراهالی این شهرستان با دامپروری و کشاورزی زندگی خود را تامین می کنند و معرفی کارمند و یا بازاری بدون بدهکار به بانک به عنوان ضامن دریافت تسهیلات مسکن برای آنها بسیار مشکل و تقریبا غیرممکن است.
کوسه غراوی با بیان اینکه واحدهای مسکونی روستاهای مراوه تپه یرای مقابله با حوادث به خصوص زلزله نیاز به مقاوم سازی دارد، از بانک ها و مسئولان خواست در جهت پرداخت تسهیلات مسکن به متقاضیان، تمهیدات لازم را داشته باشند.
به گزارش ایرنا، درادامه این جلسه مسئول اعتبارات بازسازی و مسکن روستایی بنیاد مسکن گلستان گفت: وجود هشت هزار و 349واحد مسکونی روستایی غیر مقاوم و درمعرض خطر، زنگ خطر جدی برای مردم و مسئولان مرتبط است. 
محسن محسنی ادامه داد : وجود این تعداد واحد مسکونی غیرمقاوم و درمعرض خطر بیانگرکندی اجرای طرح مقاوم سازی مسکن در شهرستان مراوه تپه است.
وی همچنین اعلام کرد: براساس ارزیابی های صورت گرفته، در این شهرستان هرمتقاضی بر ای دریافت نسهیلات مقاوم سازی مسکن حداقل 4ماه از وقت خودرا درصف انتظار بانک های عامل مراوه تپه صرف می کند.
شهرستان مرزی مراوه تپه با 62 هزار نفر جمعیت در منتهی الیه شرق استان گلستان واقع است و از مناطق محروم این استان محسوب می شود.
پنجم دی ماه به عنوان روز ایمنی در برابر زلزله و کاهش اثرات بلایای طبیعی در تقویم کشور ثبت شده است.

AFZIR در فیسبوک

AFZIR در لینکدین

AFZIR در گوگل+



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , ,
تاریخ : یک شنبه 18 شهريور 1397
بازدید : 82
نویسنده : افزیر

 زنجان-مدیرکل بنیاد مسکن استان زنجان از وجود ۹۲ هزار واحد مسکونی روستایی در استان زنجان خبر داد و گفت: از این تعداد ۴۷ هزار واحد مسکونی معادل ۵۲ درصد مقاوم سازی شده است.

 ۴۷ هزار واحد مسکونی در زنجان مقاوم سازی شده است

سجاد صنعتی منفرد در گفتگو با خبرنگار مهر از وجود  ۹۲ هزار واحد مسکونی روستایی در استان زنجان خبر داد و گفت: از این تعداد ۴۷ هزار واحد مسکونی معادل ۵۲ درصد مقاوم سازی شده است.

وی اظهار کرد: بنیاد مسکن  در بحث شهری در شهرهای زیر ۲۵ هزار نفر، ۲۲ هزار واحد مسکونی دارد که ۹ هزار و ۵۰۰ واحد از تسهیلات ویژه  طرح بهسازی استفاده کردند.

مدیرکل بنیاد مسکن استان زنجان گفت: امسال هم سهمیه استان سه هزار و ۵۰۰ واحد مسکونی و هزار و ۲۵۰ واحد ابلاغ شده و متقاضیان را به بانک های عامل معرفی کردیم  و تا پایان سال پاییز هزار و  ۲۵۰ واحد را جذب می کنیم.

صنعتی منفرد تاکید کرد: قبل از سال ۸۵ تنها ۱۲ درصد از واحدهای مسکونی روستایی استان زنجان مقاوم سازی شده بود که الان به ۵۲ درصد رسیده است. 

وی ابراز کرد: واحدهای مسکونی روستایی که کمترین مقاوم سازی را دارند و یا بر روی گسل هستند در اولویت مقاوم سازی بنیاد مسکن هستند.

صنعتی منفرد تأکید کرد: بعد از تشکیل بنیاد مسکن به‌فرمان امام خمینی(ره) این ارگان در زمینه بهسازی لرزه ای مسکن روستایی، احداث مسکن مهر در شهرهای زیر۲۰ هزار نفر جمعیت، احداث مسکن روستایی، اجرای طرح هادی و دیگر زمینه‌ها فعالیت می‌کند.

وی یاد آور شد: در بحث مسکن شهری و روستایی بنیاد مسکن طرح‌های خوبی را در دولت تدبیر و امید انجام داده و  بنیاد مسکن استان زنجان نسبت به مقاوم‌سازی واحدهای مسکونی روستایی برنامه‌ریزی لازم را دارد.

مدیرکل بنیاد مسکن انقلاب اسلامی استان زنجان گفت: این نهاد در راستای محرومیت‌زدایی نسبت به مقاوم‌سازی واحدهای مسکونی روستایی استان زنجان تأکید دارد.

منبع : خبرگزاری مهر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , ,
:: برچسب‌ها: مقاوم سازی , بهسازی , نوسازی , ,
تاریخ : چهار شنبه 17 مرداد 1397
بازدید : 363
نویسنده : افزیر

 

 

 

 

بسیاری از سازه های بتن‌آرمه یا به اصطلاح بتنی به دلایل مختلفی از جمله خطاهای حین طراحی و یا ساخت،

تغییر کاربری سازه و از دست رفتن بخشی از ظرفیت سازه به علت خوردگی میلگردهای فولادی نیاز به مقاوم سازی،

ترمیم، تقویت و بهسازی پیدا می‌کنند. یافتن راه حل مناسبی جهت مقاوم سازی سازه های بتنی و ارتقای

ظرفیت باربری چنین سازه‌ هایی همواره دغدغه‌ طراحان و مجریان سازه‌ها بوده است.

 

 

 

 

دلایل مقاوم سازی سازه های بتنی

سازه های بتنی به عنوان بخش گسترده ای از سازه ها چنانچه بر حسب محاسبات دقیق و روابط شکل پذیری طراحی و اجرا شوند ساختمان های بسیار مطلوبی خواهند بود اما کیفیت ساخت در برخی سازه ها به دلایل مختلف بسیار نامطلوب است.

کیفیت بد بتن، آرماتور گذاری نامناسب، اجرای بد بتن ریزی، مصالح نامرغوب، خطاهای طراحی، خطاهای اجرایی، افزایش بار سازه، تاثیر شرایط محیطی مخرب و خطر زلزله در اکثر نقاط کشور ایران از جمله عواملی هستند که باعث ضعف سازه های بتنی می شوند.

جهت بررسی مقاوم سازی سازه های بتنی، بدون تردید شناسایی گونه‌های مختلف خسارت در ساختمان های بتنی امری مهم و اجتناب ناپذیر می‌باشد. بنابراین انواع مختلف ضعف‌های سازه های بتنی به شرح زیر می‌باشد:

  • ضعف های سازه های بتنی
  • ایجاد ترک های مورب در هسته بتن
  • ورقه ورقه شدگی هسته مرکزی بتن دراکثر ترکهای مورب رفت و برگشتی ناشی از زلزله
  • جدا شدگی پوشش بتن
  • کنده شدن تنگها و خاموتها و خارج شدن از محل های خود
  • شکست برشی المان‌های کوتاه یا اعضایی که به اطراف متصل شده اند و طول موثر آزاد آنها کم است.
  • پدیده کمانش در آرماتورهای طولی
  • خارج شدن میلگردها از محل‌های اولیه و در رفتن به نواحی تنش های متناوب زیاد
  • گسیخته شدگی دال ها بتن آرمه در کناره های غیر ممتد
  • ترک های مورب در دیوار برشی، بخصوصبه صورت متمرکز در اطراف بازشوها
  • ایجاد ترک برشی در محل گره ها و محل اتصال تیر ستون

بتن مصالح ساختمانی با مقاومت فشاری نسبتا خوب و مقاومت کششی پایین است و در صورتی که عضو بتنی بدون میلگرد در نظر گرفته شود با اعمال بار در عضو ترک خوردگی ایجاد شده و این ترک خوردگی تا تخریب نهایی عضو پیش می رود (گسیختگی بتن تنها به صورت ترد و ناگهانی می باشد). در بتن مسلح با استفاده از آرماتورهای تقویت کششی این مشکل بر طرف می‌گردد. این مسئله از جمله نقاط ضعف سازه های بتنی مسلح و پیچیدگی آن در امر تقویت سازه های بتنی، ترمیم و مقاوم سازی آن می باشد. ارزیابی و انتخاب مصالح تعمیری موجود مرحله دشواری در تعمیر بتن و بازسازی بتن می باشد ضرورت تعداد بیشمار مصالح تعمیری و تقویتی جدید در سال‌های اخیر، باعث توسعه روشهای مختلف مقاوم سازی سازه های بتنی شده است می‌باشد

یکی از ایده های ابتدایی و تکنیک‌های مرسوم بهسازی و مقاوم سازی سازه های بتنی و تقویت سازه‌ها، شکافتن پوشش بتنی عضو سازه ای و قرار دادن میلگردهای فولادی اضافی در المان و سپس پوشاندن آن قسمت به وسیله‌ چسب‌ها و رزین های پر مقاومت بوده است. این ایده علی رغم آنکه ظرفیت سازه را مقداری بهبود می‌بخشد لیکن هم چنان مشکل خوردگی میلگردهای فولادی را بی پاسخ می‌گذارد؛ تکنیک دیگری که برای تقویت سازه های بتنی مورد استفاده قرار می‌گیرد، بکارگیری ورق های فولادی یا تکنیک ژاکت فولادی هست که در آن ورقهای فولادی از بیرون به اجزاء بتنی چسبانده می‌گردد. روش اتصال ورق فولادی، روشی ساده و اقتصادی است؛ اما از جهات زیر مسئله‌ ساز است:

  • وزن بالای ورق های فولادی و مشکلات ساخت این اجزاء
  • دسترسی سخت به اجزاء و نیاز داشتن داربست
  • ضعف ایجاد شده در چسبندگی بین فولاد و بتن که ناشی از خوردگی فولاد می‌باشد
  • داشتن محدودیت طولی در انتقال ورقهای فولادی به کارگاه با توجه به این نکته که در پروژه های مقاوم سازی سازه های بتنی، طولهای تیر عموماً بلند می‌باشند.

روش سنتی دیگر در مقاوم ‌سازی سازه های بتنی، استفاده از ژاکت های بتنی یا پوشش‌هایی از نوع بتن‌آرمه، می‌باشد. استفاده از این روش سبب افزایش سختی و شکل ‌پذیری و در مجموع تقویت سازه های بتنی می‌باشد؛ از ضعف های این روش افزایش ابعاد مقاطع و بار مرده سازه بتنی می‌باشد. استفاده از این روش همچنین نیازمند تخلیه ساختمان و تخریبهای زیاد سازه بتنی است و باعث افزایش نامطلوب سختی اعضای بتنی می‌گردد.

با توجه به موارد اشاره شده، در امر مقاوم سازی سازه های بتنی نیاز به مصالحی احساس می‌شود که علاوه بر افزایش مناسب ظرفیت سازه بتواند در مقابل شرایط محیطی نامساعد نیز دوام خوبی را برای بتن از خود نشان دهد. گسترش تکنولوژی های جدید علم مواد و پلیمرها با مشخصات مکانیکی مختلف، جامعه مهندسی را برآن داشته تا از قابلیت‌ها و کاربردهای متنوع محصولات پلیمری و کامپوزیتی استفاده نموده و جایگزینی آنها را با مصالح و مواد سنتی اجتناب ناپذیر ساخته است. با ورود پلیمرهای مسلح شده با الیاف FRP به صنعت ساختمان، به عنوان یکی از جالب‌ترین و نوید بخش ترین فناوری‌ها، بسیاری از مشکلات فراروی فعالان امر بهسازی مقاوم سازی سازه های بتنی برطرف شد و روش‌های نوینی در زمینه‌ تقویت و ترمیم سازه‌ های بتنی پدیدار گشت. در این روش‌ها از اشکال مختلف مصالح FRP نظیر الیاف، ورقه و آرماتور به منظور بهبود ظرفیت باربری، ترمیم، تقویت و مقاوم سازی سازه‌ ها بتنی استفاده می‌گردد.

همانگونه که اشاره شد، مصالح کامپوزیتی FRP، کاربردهای فرآوانی را برای مقاوم ‌سازی سازه های بتنی به ‌خود اختصاص داده است. FRP ماده کامپوزیتی با مقاومت کششی بالاست که با رزین آغشته می‌گردد و بدلیل مقاومت کششی بالا، وزن پایین و دوام مناسب (در مقابل خوردگی و شرایط محیطی سخت) دارای کاربرد گسترده‌ای در مقاوم سازی سازه های بتنی در مقابل نیروی زلزله است. از این رو استفاده از ورق FRP در سال های اخیر، گزینه مناسبی جهت تقویت و مقاوم سازی ساختمان های بتنی بوده است. سهولت استفاده، عدم نیاز به نیروی کار ماهر، سبکی و مقاومت کم، FRP را راهکار مناسبی جهت ترمیم سازه های بتنی، تقویت و مقاوم سازی بدون بر هم زدن عملکرد عادی فضا ساخته، به همین دلیل این مصالح مورد توجه معماران به ویژه در ترمیم سازه ها و بهسازی و تقویت سازه های بتنی و  بناهای قدیمی قرار گرفته است. روش تسلیح خارجی با مصالح FRP و روش‌های خانواده‌ آن، رایج‌ترین روش‌ها در تقویت سازه های بتنی می‌باشند. با این حال این روش‌ها با چالش‌هایی جدی نظیر جداشدگی زودرس عامل تقویت کننده و آسیب‌پذیری سازه بتنی در مقابل شرایط نامساعد محیطی نظیر تغییرات شدید دمایی، ضربه، آتش‌سوزی و خرابکاری مواجه می‌باشند.

تقویت سازه ‌های بتنی با مواد FRP

در دهه 80 میلادی سیستم های پلیمر مسلح شده با الیاف Fibre Reinforced Polymers به نام اختصاری FRP در دنیا lعرفی شدند که به دلیل داشتن دو جزء اصلی شامل الیاف و ماده چسباننده آن ها به یکدیگر به عنوان نوعی ماده مرکب یا کامپوزیت به شمار می رود. در کامپوزیت ها مشخصات شیمیایی و فیزیکی هر کدام از اجزای متشکله به تنهایی محفوظ است، اما در کنار یکدیگر تشکیل ماده ای جدید با خصوصیات فیزیکی و رفتار مکانیکی تازه ای را می دهند که کاربردهای ویژه دارند.

در کامپوزیت های FRP مشخصات فیزکی جدید، سبکی وزن، نازک بودن، مقاومت در برابر خوردگی، مقاومت کششی بالا و چندین برابر فولاد و ضریب ارتجاعی مناسب که تقریبا در حدود فولاد است، کاربردهای آن ها را در مقاوم سازی و بازسازی سازهای بتنی، فولادی و بنایی بسیار فراگیر و گسترده کرده است.

مزایای کامپوزیت های پلیمری FRP :

  • وزن کم
  • انعطاف پذیری بالا
  • سهولت در حمل و نصب
  • عدم نیاز به سیستم های محافظ در برابر خوردگی
  • برشکاری در قطعات دلخواه
  • نسبت بالای مقاومت به وزن
  • مقاومت و سختی بالا
  • امکان تقویت به دو صورت داخلی و خارجی

 معایب کامپوزیت پلیمری FRP :

  • آسیب پذیری در مقابل اتش سوزی
  • کم تجربگی مشاوران و پیمانکاران
  • عدم امکان استفاده از ورق های FRP در سطوح ناصاف
  • افزایش وقوع شکست ترد با مصرف این گونه کامپوزیت ها

 

کامپوزیت ها می توانند به صورت ورقه هایی با جنس های مختلف باشند که به دسته های CFRP، GFRP و AFRP تقسیم بندی می شوند که اولی از جنس کربن، دومی از جنس شیشه و سومی نیز از جنس آرامید می باشد.

الیاف FRP را می‌توان جایگزین ورق های فولادی کرد. مصالح FRP  برخلاف فولاد، زوال الکتروشیمیایی نداشته و در مقابل خوردگی ناشی از اسیدها، بازها و نمک‌ها در دماهای مختلف مقاومت بالایی دارند. این مزیت سبب کاهش هزینه در نصب پوشش های حفاظت از خوردگی ‌باشد. همچنین آماده سازی سطوح بتن قبل از نصب مصالح و ورقه های FRP، سهل‌تر از ورق‌های فولادی است.

از الیاف FRP به منظور افزایش ماکزیمم بازدهی و کارایی می‌توان در شکل های مشخص و در نسبت ها و جهات مختلف درون رزین استفاده کرد. سیستم‌های FRP بسیار سبکتر از صفحات فولادی بوده و در عوض مقاومت و سختی بالایی در جهت الیاف دارند. وزن سبک FRP سبب می شود حمل و نقل آنها راحت تر بوده و به داربست کمتری جهت اجرای آن نیاز باشد. سیستم‌های FRP در محل‌هایی که دسترسی محدودی دارند، بسیار گزینه کاربردی می‌باشند و پس از نصب، بار اضافی به سازه بتنی تقویت شده تحمیل نمی‌کنند.

 

 

AFRP CFRP GFRP STEEL
کامپوزیت آرامید کامپوزیت کربن کامپوزیت شیشه فولاد
1/5 – 1/2 1/6 – 1/5 2/1 – 1/2 7/9

جدول1- چگالی مواد FRP رایج بر حسب گرم بر سانتی متر مکعب

ضریب انبساط حرارتی

ضریب انبساط حرارتی مواد FRP تک جهتی در جهت طولی و عمود بر آن متفاوت است و به نوع الیاف، رزین و مقدار الیاف به کار رفته بستگی دارد. جدول زیر ضریب های طولی و عرضی انبساط حرارتی برای مواد FRP تک جهتی رایج را نشان می دهد.

ضریب انبساط حرارتی (سانتی گراد) جهت
AFRP CFRP GFRP
2- تا 6- 0 تا 1- 10 تا 6 طولی
80 تا 60 50 تا 22 23 تا 19 عرضی

جدول2- ضریب انبساط حرارتی مواد FRP

مشخصات مکانیکی مواد مرکب FRP

تاکنون از هر سه نوع FRP یعنی GFRP، CFRP و AFRP برای مقاصد عملی مقاوم سازی استفاده شده است. جدول زیر مشخصات بدست آمده از مصالح FRP با الیاف یک جهتی یا خطی را نشان می دهد. باید یادآور شد که این ارقام و محدوده ها برای مصالح معمولی و متداول FRP تهیه شده است و ممکن است محصولی خاص در شرایطی خاص، مشخصات دیگری را از خود بروز دهد. همچنین وقتی الیاف دو یا سه جهتی باشند، مشخصات FRP با آنچه ذکر شده، متفاوت خواهد بود.

 

 

جنس مدول الاستیسیته (GPa) مقاومت کششی (MPa) حد نهایی کرنش کششی (%)
با مقاومت زیاد 235 – 215 4800 – 2500 2 – 4/1
با مقاومت بسیار زیاد 235 – 215 6000 – 4500 3/2 – 5/1
با مدول زیاد 500 – 350 3100 – 2500 9/0 – 5/0
با مدول بسیار زیاد 700 – 500 2400 – 2100 4/0 – 2/0
E 70 3000 – 1900 5
S 90 – 85 4800 – 3500 5/5 – 4/5
با مدول متوسط 80 – 70 4100 – 3500 5 – 3/4
با مدول زیاد 130 – 115 4000 – 2500 5/3 – 5/2

جدول3- مشخصات مصالح FRP با الیاف خطی

 

دو روش متداول برای استفاده از FRP در مقاوم سازی سازه های بتن مسلح وجود دارد. روش اول چسباندن تر است. در این روش در محل اجرا از رزین برای آغشته سازی الیاف به هم بافته نشده یا الیاف در یک جهت نگه داشته شده استفاده می شود.

روش دوم استفاده از مصالح FRP پیش ساخته است. مصالح پیش ساخته FRP را می توان به اشکال متفاوتی تولید کرد که هم مناسب برای مقاوم سازی تیرها در برابر خمش باشند و هم به شکل صفحاتی باشند که بتوان از آن ها برای دور پیچ کردن ستون ها استفاده کرد. مصالح FRP به طور معمول به صورت بسته بندی شده و همراه با دستورالعمل استفاده عرضه می شود. از جمله خصوصیات فیزیکی این گونه مصالح می توان به موارد زیر اشاره کرد که به صورت ازمایشگاهی نیز اثبات شده اند.

الیاف FRP را می‌توان دور ستون های بتنی به منظور افزایش ظرفیت و شکل ‌پذیری پیچاند؛ این امر سبب تغییر در سختی نمی‌شود. در استفاده از مصالح FRP باید دقت شود که درجه مقاوم‌ سازی یا نسبت مقاومت المان مقاوم سازی شده بتنی به مقاومت عضو مقاوم سازی نشده محدود گردد تا تعادل سازه بتنی در حوادثی شبیه حریق و آتش ‌سوزی و نیز دست کاری و خرابک اری عضو مقاوم سازی شده، حفظ گردد.

مدفون ساختن عامل تقویت کننده در پوشش عضو بتنی در تکنیک نصب در نزدیک سطح (NSM)، در زمینه‌ برطرف کردن این مشکلات توفیق بیش‌تری دارد. هم چنین در روش NSM می‌توان از نوارها، آرماتورهای FRP و نیز میله های دست ساز MM FRP به عنوان عامل تقویت سازه های بتنی استفاده نمود. میله هایMM FRP از پیچاندن ورقه های FRP حول یک هسته‌ تولید می‌شوند. مزیت کلیدی این نوع میله‌ها امکان تعبیه‌ سیستم مهاری بر روی آن‌ها می‌باشد که عملکرد پیوستگی آن‌ها را بهبود می‌بخشد و در رفتارکلی تقویت سازه های بتنی تاثیر می‌گذارد.

روش های طراحی

برای طراحی سازه های بتن آرمه، سه روش کاربرد بیشتری دارند که عبارتنداز :

  • روش تنش مجاز
  • روش مقاومت نهایی
  • روش طراحی بر مبنای حالات حدی

روش تنش مجاز :

این روش که پیش از این، روش تنش بهره برداری یا روش تنش باز نامیده می شد و اکنون با نام روش دیگر طراحی آیین نامه شناخته می شود، اولین روشی است که به صورت مدون برای طراحی سازه های بتن آرمه به کار گرفته شد. در این روش، یک عضو سازه ای به نحوی طراحی می شود که تنش های ناشی از بارهای بهره برداری (سرویس)، که به کمک نظریه های خطی مکانیک جامدات محاسبه می شوند، از مقادیر مجاز تنش های تجاوز نکنند.

روش مقاومت نهایی :

روش مقاومت نهایی، که در آیین نامه ACI به روش طراحی بر مبنای مقاومت موسوم است، حاصل پژوهش گسترده روی رفتار غیرخطی بتن و تحلیل عمیق مسئله ایمنی در سازه های بتن آرمه است.

روند طراحی را در این روش می توان به صورت زیر خلاصه کرد :

بار بهره برداری به وسیله ضریبی موسوم به ضریب بار افزایش داده می شود. بار حاصل را در اصطلاح، بار ضریب دار یا بار نهایی می نامند.

 روش طراحی بر مبنای حالات حدی :

به منظور تکامل روش مقاومت نهایی، به ویژه از نظر نحوه منظور کردن ایمنی، روش طراحی بر مبنای حالات حدی ابداع شد.

آنچه به طور خلاصه در مورد روش طراحی بر مبنای حالت های حدی می توان گفت این است که این روش از نظر اصول محاسبات، مشابه روش مقاومت نهایی است، تفاوت عمده آن با این روش در نحوه منطقی تر ارزیابی ظرفیت باربری و احتمال ایمنی اعضاست. اعضا و سازه های بتن آرمه باید با توجه به سه حالت حدی زیر آنالیز و طراحی شوند :

  • حالت حدی نهایی که مربوط به ظرفیت باربری می شود (مانند مقاومت و پایداری)
  • حالت حدی تغییر شکل (مانند تغییر مکان و ارتعاش اعضا)
  • حالت حدی ترک خوردگی یا باز شدن ترک ها
  • به حالت تغییر شکل و ترک خوردگی یا باز شدن ترک ها، به طور معمول حالت های حدی بهره برداری گفته می شود.

 

محدودیت های مقاوم سازی با مصالح FRP در حالت مقاومت نهایی :

توصیه های طراحی در آیین نامه ACI بر اساس اصول حالت مقاومت نهایی پایه گذاری شده است. این روش بر اساس درجه ایمنی است و بر خلاف دو حالت دیگر طراحی (حالت حدی سرویس که بر اساس تغییر شکل زیاد و ترک خوردگی است و حالت نهایی که بر اساس شکست، گسیختگی تنش و خستگی است) می باشد.

گسیختگی :

ملاحظات دقیق و معقولی باید برای تعیین محدودیت های مقاوم سازی اختصاص داده شود. این محدودیت ها به دلیل تضمین عدم فروریختن سازه و وقوع دیگر گسیختگی های سیستم FRP، ناشی از آتش سوزی، خرابکاری یا دلایل دیگر است. به این منظور توصیه می شود که باید اعضای سازه ای مقاوم سازی نشده، بدون نصب تقویت کننده های FRP، ظرفیت تحمل کافی برای مقاومت در برابر مقدار مشخص از بار را داشته باشند.

بر اساس این ایده، در حوادثی که خرابی در سیستم FRP منجر می شود، سازه هنوز قادر به مقاومت مناسبی در برابر بارها بدون این که دچار تخریب شود، خواهد بود.

توصیه لازم برای کافی بودن مقاومت موجود سازه برای تحمل بار در رابطه زیر آورده شده است:

در این رابطه φ ضریب کاهش ظرفیت و Rn مقاومت مقطع است.

نوع مقاومت ضریب کاهش ظرفیت
خمش 9/0
کشش محوری 9/0
فشار محوری 9/0 – 7/0
برش و پیچش 85/0
ضریب کاهش مقاومت اسمی

تحمل سازه در برابر آتش :

میزان مقاوم سازی سازه به وسیله سیستم های FRP چسبیده به صورت خارجی، اغلب توسط آیین نامه های مربوط به آتش سوزی محدود می شود. رزین های پلیمری، یکپارچگی و استحکام سازه ای خود را در درجه حرارت های محدوده 60 تا 80 درجه سلسیوس از دست خواهند دادو اگرچه سیستم FRP خود به تنهایی مقاومت کمی در برابر اتش سوزی دارد، اما با ترکیب با عضو بتنی موجود، سبب مقاومت کافی عضو بتنی در برابر حریق می گردد.

ظرفیت کلی سازه :

سیستم های FRP برای مقاوم سازی اعضا به صورت خمشی و برشی و … موثرند، با این حال ممکن است در سایر حالت های گسیختگی مانند برش سوراخ کننده و ظرفیت باربری پی ها تاثیری نداشته باشند. بنابراین مهم است که مطمئن شویم همه اعضای سازه می توانند افزایش بارهای وارد بر اعضای تقویت شده را تحمل کنند. به علاوه، باید انالیزی بر روی اعضای مقاوم سازی شده با سیستم FRP برای بررسی بیشتر بودن احتمال وقوع گسیختگی خمشی به گسیختگی برشی صورت گیرد.

مقاومت کششی نهایی طراحی باید با تعیین ضریب کاهش وابسته به شرایط، از جدول زیر به دست آید. این جدول بر اساس نوع الیاف و شرایط محیطی تنظیم شده است.

ضریب کاهش محیطی، نوع الیفا – رزین شرایط محیط
95/0 کربن – اپوکسی شرایط داخلی
75/0 شیشه – اپوکسی
85/0 آرامید – اپوکسی
85/0 کربن – اپوکسی شرایط خارجی (پل ها، اسکله ها و پارکینگ های غیربسته)
65/0 شیشه – اپوکسی
75/0 آرامید – اپوکسی
8/0 کربن – اپوکسی محیط های ناهنجار (کارگاه های شیمیایی و کارخانه های تصفیه فاضلاب)
5/0 شیشه – اپوکسی
7/0 آرامید – اپوکسی
ضرایب کاهش محیطی

 

محدودیت های مقاوم سازی با مصالح FRP در حالت حدی :

فلسفه طراحی در آیین نامه BS :

توصیه های طراحی در آیین نامه BS بر اساس اصول حالت حدی پایه گذاری شده است. منظور از طراحی حالت حدی، دستیابی به عملکرد قابل قبول از سازه مقاوم سازی شده در طول عمر کاربری است، به عبارتی سازه باید به گونه ای کنترل شود که در طول عمر خود به حالت حدی نرسد تا موجب عملکرد نامناسب نشود.

طراحی سیستم های مقاوم سازی FRP، بر حالت حد نهایی مقاومت متمرکز می شود. این حالت شامل کنترل خمش، برش و فشار، شکل پذیری و همچنین کنترل جدا شدن صفحه FRP است. از آنجایی که مقاوم سازی خمش، سختی عضو و به دنبال آن احتمال خطر گسیختگی تر را افزایش می دهد، باید شکل پذیری اعضای خمشی کنترل شود.

رابطه های ارائه شده برای طراحی سیستم های مقاوم سازی FRP بر اساس فرض رابطه سهموی برای بتن فشاری و رابطه دو خطی الاستیک و پلاستیک برای آرماتور فولادی است. بر خلاف آرماتورهای فولادی، همه FRP دارای یک رفتار الاستیک خطی تا لحظه شکست بدون هیچ ناحیه پلاستیکی می باشد.

بررسی خمش در تیرهای بتن آرمه :

وقتی یک تیر بتن آرمه تحت خمش قرار می گیرد، نمودار لنگر – انحناء آن مطابق شکل زیر می باشد.

 

حال اگر منحنی بار – تغییر مکان را برای تیر تقویت شده با FRP با تیر تقویت نشده مقایسه کنیم، به نتایج مهمی خواهیم رسید.

بررسی معایب مقاوم سازی خمشی تیرها با کامپوزیت FRP :

به دلیل برخی خواص رفتاری مواد کامپوزیتیFRP، مودهای گسیختگی یک عضو بتن آرمه تقویت شده در خمش به وسیله FRP به حالت های زیر تقسیم می شود :

  • شکست در اثر گسیختگی FRP در اثر کشش ناشی از خمش
  • شکست در اثر خرد شدن بتن فشاری تیر در اثر فشار ناشی از خمش در وجه بالایی تیر
  • شکست برشی
  • جدا شدن پوشش بتن
  • جدا شدن انتهای لایه مقاوم کننده چسبانده شده از بتن
  • از بین رفتن چسبندگی در سطح تماس FRP

مود های گسیختگی تیر بتنی تقویت شده با ورق FRP

بررسی خمش در دال های بتن آرمه :

دال ها متداول ترین نوع پوشش کف را در سازه های بتن آرمه تشکیل می دهند. دال ها با توجه به رفتار خمشی به دو دسته دال های یکطرفه و دوطرفه تقسیم می گردند و از نظر ساخت به دال های تیر و دال و تخت و قارچی و مجوف و انواع دیگر اجرا می گردند. در حالی که تحقیقات موجود در زمینه مقاوم سازی خمشی تیرها در بسیاری موارد در مورد دال ها هم قابل استفاده است، اما این دو بحث تفاوت هایی با هم دارند. در هر صورت، اساس مقاوم سازی خمشی در دال ها بر استفاده از مصالح مرکب FRP و چسباندن نوارها یا صفحات FRP بر روی سطوح تحت کشش استوار است.

 

تقویت دال در جهت اصلی

بررسی برش در تیرهای بتن آرمه :

برای درک بهتر نحوه انتقال بار در مقاطع تحت برش، پدیده ترک خوردگی، نوع گسیختگی و نقش آرماتورهای برشی و چگونگی مقاوم سازی برشی تیرها، بررسی رفتار تیرهای بتنی تحت برش در مراحل مختلف بارگذاری ضروری است.

رفتار برشی تیرها

شکست های برشی و خمشی، دو حالت عمده شکست در تیرهای معمولی بتن مسلح هستند.

افزایش مقاومت برشی تیرها به روش چسباندن صفحات FRP، احتمال گسیختگی خمشی را نسبت به گسیختگی برشی بیشتر کرده و در نتیجه عضو سازه ایف شکل پذیرتر می شود.

طرح های مختلفی برای استفاده از مصالح FRP در مقاوم سازی برشی پیشنهاد شده است. این طرح ها شامل چسباندن FRP به سطوح جانبی تیر، استفاده از پوشش U شکل برای سطوح جانبی و سطح زیرین تیر و نیز دورپیچ کردن مقطع با استفاده ار الیاف و نوارهای FRP است.

بررسی رفتار ستون های بتن آرمه :

به طور کلی هر عضوی که تحت بار محوری فشاری یا کششی قرار داشته باشد، یک عضو محوری نامیده می شود. این نامگذاری شامل اعضایی که به طور هم زمان تحت خمش قرار دارد نیز می شود. متدال ترین روشمقاوم سازی ستون ها با FRP، دورپیچ کردن سطح خارجی ان ها با نوارهای FRP است. اساس این مقاوم سازی که در واقع محصور کردن ستون و ایجاد فشار جانبی بر بتن آن است، بر این اصل استوار است که وجود فشار محیطی بر روی یک المان بتنی، سبب افزایش مقاومت فشاری و شکل پذیری آن می شود. روش های مقاوم سازی را می توان به سه گروه عمده تقسیم بندی کرد :

  1. دورپیچ کردن مقطع ستون
  2. پیچیدن مارپیچی
  3. پوشاندن با پوسته های پیش ساخته

 

حالت های مختلف مقاوم سازی ستون

 

 

بهسازی با استفاده ازمهاربندهای فولادی

اضافه نمودن مهاربندی های فولادی به سازه بتنی، افزایش سختی، کاهش نیاز شکل پذیری و افزایش مقاومت برشی سیستم را به همراه خواهد داشت ضمن آنکه افزایش ناچیزی را در وزن سازه موجب می شود. عموما استفاده از سیستم های مهاربندی واگرا (EBF) در ساختمان های بتنی به دلیل پر هزینه بودن و مشکلات موجود در اجرا و تامین جزییات تیر پیوند مرسوم نمی باشد. اما انواع سیستم های مهاربندی همگرا می تواند در این نوع بهسازی مورد توجه قرار می گیرد.

بهسازی با استفاده ازمیان قاب های صفحه ای بتنی یا بنایی

افزایش مقاومت و سختی سیستم و همچنین کاهش نیاز شکل پذیری اعضا و اجزای سازه را می توان با اضافه نمودن میان قاب های صفحه ای بتن مسلح و یا دیوارهای آجری ایجاد نمود که یکی از رایج ترین روش ها در سازه های بتنی است. دیوارهای اضافه شده می توانند به صورت دیوار های برشی جدید که در محل اجرا شده و یا دیوارهای بنایی شاتکریت شده باشند.

در بهسازی سازه ها با استفاده از این روش باید به این موضوع توجه نمود که آیا قاب بتنی موجود می تواند به عنوان قسمتی از سیستم مرکب باشد یا خیر. به عبارت دیگر باید کفایت باربری ستون های موجود سازه در صورتی که به عنوان اعضا و اجزای مرزی دیوارهای برشی عمل نمایند مورد کنترل قرار می گیرد.در صورت عدم کفایت مقاومتی ستون های سازه می توان دیوار برشی را به صورت کامل به همراه اعضا و اجزا مرزی و به صورت مجزا از قاب بتنی موجود احداث نمود و یا با تقویت ستون های سازه دیوار بتنی را به این اعضا متصل نمود. مزیت حالت دوم استفاده از بار محوری فشاری ستون های موجود در کاهش بار برکنش اعمالی ناشی از زلزله می باشد.

افزودن میانقاب بتنی به سازه بتنی

اضافه کردن قاب های خمشی

قاب هاي خمشي در صورت ارضاي ضوابط تعيين شده ، داراي شكل پذيري و اتلاف انرژي بسيار بالايي مي باشند . به علت سختي كم پاسخ اين سيستم به نيروهاي جانبي باتغيير شكل هاي فزاينده همراه است كه براي اجزاي غير سازه اي مشكلاتي را بوجود مي آورد و همچنين با افزايش تغييرشكل هاي ثانويه حتي به ناپايداري كلي سازه منجر مي شود.

اين سيستم ها با توجه به سختي كمتر و نرم بودن ، پس از خرابي سيستمهاي سخت، مي توانند نيرو جذب كنند و در صورت پاسخگو نبودن سيستم مقاوم اصلي، از خرابي سازه جلوگيري نمايند.

لازم به ذكر است قابهاي اضافه شده مي توانند بصورت خارجي نيز باشند

بهسازي با اضافه كردن قاب خمشي در خارج از ساختمان

 

 

 

 

منبع : شرکت مقاوم سازی افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , سازه بتنی , ,
تاریخ : یک شنبه 14 مرداد 1397
بازدید : 378
نویسنده : افزیر

 

 

 

 

در بسیاری از مناطق زلزله خیز جهان از جمله ایران تعداد زیادی از ساختمان های بنایی وجود دارند

 که بسیاری از آن ها برای بار های لرزه ای طراحی نشده اند.

  زلزله های اخیر نشان داده است که این ساختمان ها در برابر بارهای لرزه ای آسیب پذیر بوده و نیاز به مقاوم سازی دارند.  بر پایه تحقیقات به عمل

آمده بیش از 70 درصد از سازه های موجود در سرتاسر جهان ساختمان های بنایی هستند.

   زلزله های قوی و متوسط می توانند صدمات و خسارت جبران ناپذیری را بر این گونه سازه ها وارد نمایند که بخش عمده ی

    این خسارات برای سازه های بنایی است. بنابراین بررسی آسیب پذیری این نوع سازه تحت اثر زلزله دارای اهمیت خاصی می باشد .

  همچنین اغلب سازه هایی که دارای اهمیت تاریخی می باشند، با استفاده از مصالح بنایی ساخته شده اند.

 

   

 

 


از طرفی با توجه به اینکه خرابی و جایگزینی این ساختمان ها به دلایل بسیاری امکان پذیری نیست احتیاج به روش های مقاوم سازی ساختمان های غیر مسلح بیشتر احساس می شود. روش های متعارف متفاوتی برای مقاوم سازی موجود است که هر کدام از این روش ها بر پایه افزایش مقاومت و یا شکل پذیری دیوارهای غیر مسلح بنایی استوار است.
وزن زیاد، ضعف مقاومتی ملات، کمبود نسبی دیوارهای بنایی (تراکم کم) و وجود بازشوهای بزرگ باعث ضعف مقاومتی ساختمان شده و ساختمان با وجود انسجام کافی ممکن است قابلیت عملکردی مورد نظر را نداشته باشد.
سازه های بنایی به دو دسته بنایی مسلح و بنایی غیر مسلح تقسیم می شوند. سازه های بنایی مسلح سازه هایی هستند که محاسبات سازه ای برای آن ها به طور کامل انجام شده است و سازه های بنایی غیر مسلح سازه هایی هستند که محاسبات سازه ای برای آنها در نظر گرفته نشده اما المان ها و اجزایی برای مهار بار جانبی در آن تعبیه شده است.
ساختمان های بنایی از مصالح آجر و ملات ساخته شده اند که درز ملات این بناها به عنوان یک نقطه ضعف اصلی در بار جانبی زلزله می باشد. به این دلیل مودهای شکست ، لغزش درز ملات و کشش قطری در رفتار درون صفحه ای و کمانش خارج از صفحه دیوارها در زلزله های گذشته بیشترین عامل تخریب ساختمان را داشته است.

مکانیزم فرو ریزش ساختمان های بنایی

 
مکانیزم فرو ریزش ساختمان های بنایی

روش های مقاوم سازی سازه های بنایی

اصل ضروری در مقاوم سازی سازه های بنایی در برابر زلزله برای داشتن استحکام و مقاومت در برابر بارهای لرزه ای به هم پیوسته بودن سقف، دیوار و فونداسیون به یکدیگر است. در اصطلاح به این عملکرد سازه، عملکرد جعبه ای می گویند. علاوه بر این که سازه باید عملکرد جعبه ای خوبی داشته باشد میزان باز شو های آن نیز باید محدود و به خوبی مهار شوند.

مودهای شکست دیوار آجری

مود های شکست یک دیوار آجری مجزا به دو گروه عمده شکست درون صفحه ای و شکست برون صفحه ای تقسیم می شوند. در حالت شکست درون صفحه ای معمولا یکی از مودهای زیر رخ می دهد:
1. درصورتی که دیوار تحت بار قائم زیاد بوده و نسبت ارتفاع به طول دیوار کمتر از واحد باشد، مود شکست
برشی رخ می دهد.
2. همچنین اگر نسبت ارتفاع به طول بزرگتر از واحد باشد (تقریبا برابر2) و مقدار بار قائم بسیار زیاد باشد، باز هم امکان شکست برشی وجود دارد.
3. در صورتی که مقاومت برشی دیوار، اندک بوده و بار جانبی در مقایسه با بار قائم، بزرگ باشد، شکست برشی – لغزشی رخ خواهد داد .در این حالت معمولا نسبت ارتفاع به طول دیوار در حدود 1.5 به 1 می باشد.
4. در صورتی که مقاومت برشی دیوار به اندازه کافی باشد و نسبت ارتفاع به طول ستون در حدود 2 به 1 باشد، آنگاه شکست خمشی رخ می دهد.
در حالت شکست برون صفحه ای معمولا یکی از مودهای زیر رخ می دهد:
1. اگر تنش کششی منجر به شکست، موازی درزهای افقی آجرها باشد، ترک قائم در ارتفاع دیوار به وجود می آید. این شکست معمولا هنگامی رخ می دهد که طول دیوار بزرگ باشد.
2. اگر تنش کششی منجر به شکست، عمود بر درزهای افقی آجرها باشد، ترک افقی در میانه دیوار به وجود می آید .این شکست معمولا هنگامی رخ می دهد که ارتفاع دیوار بزرگ باشد.

مودهای شکست درون صفحه و برون صفحه دیوار آجری

 

تعمیر سطوح

تعمیر سطوح از روش های متداول مقاوم سازی می باشد. تکنیک های متفاوتی برای تعمیر سطوح وجود دارد که مهم ترین آن ها ملات با تور سیمی و بتن پاشی است. این روش ها به طور طبیعی با پوشش خارجی سطوح بر روی ظاهر معماری و تاریخی بنا تاثیر گذار بوده و از جمله نقاط ضعف این نوع مقاوم سازی می باشد.

ملات با تور سیمی

ملات با تور سیمی شامل چندین لایه از شبکه میلگرد با قطر کم و با چشمه های بسیار ریز است که در شکل زیر نمایش داده شده است. ملات سیمان با مقاومت بالا با ضخامتی در حدود 10 الی 55 میلی متر بر روی مش مذکور ریخته می شود.

بتن پاشی

یکی دیگر از روش های موجود برای مقاوم سازی ساختمان های بنایی غیرمسلح پوشش دادن دیوار و یا پایه ها با شاتکریت می باشد. روش کار بدین صورت است که پوشش بتن بر روی شبکه آرماتورهای موجود پاشیده می شود. در این روش اگر طراحی به درستی صورت پذیرد، فولادهای استفاده شده برای مسلح سازی ظرفیت بالایی از جذب انرژی را به ساختمان های بنایی غیرمسلح اضافه می نمایند. باید توجه نمود که حداقل آرماتورهای شبکه همان میزان آرماتور افت وحرارت جهت کنترل ترك باشد. برای این که دیوار و بتن پاشیده شده مانند یک جسم مرکب عمل کنند باید اتصالات برشی میان آن دو تعبیه شود. برای پر نمودن سوراخهایی که برای ثابت نگه داشتن اتصالات برشی به کار می روند نیز می توان از اپوکسی و یا گروت سیمانی استفاده نمود. ضخامت پوشش بتن پاشیده نیز با توجه به میزان لرزه خیزی منطقه متفاوت است که حداقل60 میلی متر می باشد. جهت ایجاد چسبندگی لازم میان آجر و پوشش شاتکریت باید ابتدا آجر را به حالت اشباع در آورد تا آب موجود در شاتکریت را جذب نکرده و سبب ایجاد ترك در بتن پاشیده شده نشود و سپس لایه ای مانند اپوکسی را برروی آجر پاشیده و بعد از آن بتن پاشیده شده را بر روی اپوکسی شوت نماییم. اگر بتن پاشی به طریقه بالا صورت پذیرد می توان مقدار بار نهایی ساختمان های بنایی غیر مسلح را افزایش دهد.

روش اصلاح نقاط ترک خورده

این روش به منظور ایجاد عملکردی یکنواخت و یکپارچه در دیوار بنایی استفاده می شود.
مراحل اجرای آن به صورت خلاصه به شرح زیر است:
الف) مقاوم سازی سازه بنایی با استفاده از دوخت قطعات بنایی در محل ترك با استفاده از میله فولادی
ب) مقاوم سازی سازه بنایی با استفاده از دوخت قطعات بنایی در محل ترك با استفاده از شبکه فولادی (مش فولادی)

افزودن دیوارهای داخلی جهت بهبود عملکرد لرزه ای ساختمان بنایی

افزودن پشت بند جهت مقاوم سازی سازه های بنایی

این روش یک روش مقاوم سازی ارزان برای سازه های بنایی محسوب می شود .این روش با مصالح مرسوم و ارزان قابل اجرا است. برای اجرای این روش نیروی متخصص لازم نیست و حتی معمارهای محلی در روستاها نیز قادر به اجرای آن هستند.

 

مقاوم سازی با بتن شاتکریت یا بتن پاششی

رایج ترین روش مقاوم سازی ساختمان های بنایی استفاده از شاتکریت بر روی دیوارها می باشد. این لایه علاوه بر ایجاد انسجام مناسب در دیوارهای بنایی مقاومت و شکل پذیری درون صفحه و برون صفحه دیوارها را نیز افزایش می دهد. در این روش ابتدا یک شبکه میلگرد بر روی دیوار قرار می گیرد که باید توسط بولت به دیوار دوخته شود. سپس بر روی این شبکه میلگرد بتن پاشیده می شود. شبکه میلگرد به همراه بتن پاشیده شده همانند یک لایه بتن مسلح بوده و باعث بهبود رفتار لرزه ای دیوار می شود.

شرح روش اجرایی شاتکریت در مقاوم سازی دیوار بنایی
در این روش، شبکه میلگردهای افقی و قائم به دیوار نصب شده و لایه هایی از بتن به روی شبکه میلگردها پاشیده می شود. این روش شامل مراحل ذیل می باشد:

• تعبیه شبکه میله گردهای افقی و قائم و اتصال آن بوسیله آرماتورهای دوخت به دیوارموجود
• عملیات پاشیدن بتن به ضخامت معین به سطح شبکه آرماتور(شاتکریت)
• اتصال شبکه آرماتوربه فونداسیون

پر کردن باز شوها

یک روش ساده برای مقاوم سازی در صفحه یک دیوار برشی پر کردن بخش و یا تمام پنجره ها یا درهای غیر ضروری میباشد. این عمل از تمرکز تنش که در گوشه های باز شوها تولید می شود و سبب ایجاد ترك است جلوگیری می نماید و همچنین باعث افزایش سختی جانبی دیوار می شود. نکته مهم در پر کردن بازشوها این است که قسمت های پر شده با قسمت های موجود به شکل در هم تنیده اجرا شود و یا نوعی از اتصالات برشی بین آن دو تعبیه شود. این عمل باعث ایجاد عملکرد واحد دیوارهای موجود با بازشوهای پرشده می گردد.

بزرگ کردن باز شوها

متناوبا بزرگ کردن بازشوها به وسیله حذف کردن بخشی از مصالح بنایی نیز یکی از راه حل های پیشنهادی می باشد. در این روش چون شکست برشی دیوار باعث آسیب بیشتر خواهد شد، در بعضی حالات با افزایش نسبت ارتفاع به طول دیوار میتوان شکست برشی را تبدیل به شکست خمشی نمود. این تکنیک برای افزایش نسبت طول به عرض پایه ها به کار برده می شود و باعث می شود تا رفتار آن از حالت برشی به حالت خمشی تبدیل شود. این عمل شکل گسیختگی را از حالت شکننده به شکل پذیر تغییر می دهد.

افزایش بارهای قائم

افزودن بارهای قائم به ساختمانهای بنایی غیرمسلح معمولا عملکرد دیوار را تحت بارهای داخل و خارج از صفحه بهبود می بخشد. بارهای قائم در کنار هم نگه داشتن ماتریس بنایی کمک میکند و همچنین بعد از وقوع ترك سبب تولید نیروهای اصطکاکی بیشتری می شود. در این روش، مقاوم سازی میتواند به سادگی و با افزودن وزن سازه انجام شود و یا با اجرای میله و یا کابلهای پس تنیده تنش قائم بر روی اجزا دیوار اعمال کرد. البته این روش باید به دقت انجام گیرد زیرا به مانند نیروهای قائم تنشها روی ساختمان های بنایی غیرمسلح افزایش می یابد و می تواند به گسیختگی شکننده ناشی از خرد شدگی منجر شود. همچنین طراح باید افت کشش ناشی از خزش و انقباض مصالح بنایی را در محاسبات وارد نماید.

تقویت اتصالات دیوار دیافراگم

یک مشکل عمده در رابطه با ساختمانهای بنایی غیرمسلح ناکافی بودن و یا کاهش یافتن پیوستگی میان دیوار و دیافراگم است. این ارتباط از آنجا که سبب مهار بندی دیوار می شود و در مورد دیافراگم های صلب دیوارهای موازی را مجبور می نماید تا با یکدیگر عمل کنند، معیار مهمی در رفتار کلی ساختمان می باشد.

تعبیه شبکه میله گردها و اتصال آن به دیوار موجود

1. کلیه اندودهای دیوار آجری (پلاستر گچ و گچ خاك) با هر ضخامتی که دارند برداشته شوند. در حین انجام این کار باید توجه شود که به سطح دیوار آجری آسیبی نرسد، همچنین بعد از برداشتن پلاسترها باید سطح دیوار با برس فلزی تمیز شود.
2. سوراخ هایی به فاصله افقی 25 سانتی متر و عمودی 50 سانتی متر از هم به عمق 20 سانتی متر روی دیوار آجری به منظور قرار دادن آرماتور های دوخت ایجاد شود. آرماتورهای برشگیر (دوخت)، با طول حداقل 30 سانتی متر که قسمت انتهایی آنها به صورت قلاب 180 درجه با طول خم 4سانتی متر می باشد، در سوراخ ها قرار داده می شوند و در نهایت سوراخها با چسب اپوکسی پر شده تا آرماتورها در جای خود محکم شوند ( انجام این مرحله با روش خاص شرکت مجری تخصصی کاشت بلامانع است).
3. در مرحله بعد باید شبکه هایی از آرماتورهای افقی و قائم روی سطح دیوار قرار داده شوند. به همین منظور آرماتورهای 6φ
با فواصل افقی و عمودی 6 سانتی متر روی دیوار قرار داده شده و برای اینکه آرماتورها در روی دیوار آجری محکم شوند تا در هنگام بتن پاشی از آن جدا نگردند، لازم است در محل تقاطع با آرماتورهای برشگیر با مفتول به آنها وصل شوند.
4. در این مرحله باید عملیات شاتکریت، تا جایی که شبکه های آرماتور درون بتن مدفون گردند، انجام شود. به همین منظور باید ضخامت بتن پاشیده شده بر سطح دیوار حداقل 8 سانتیمتر باشد. مقاومت بتن شاتکریت حدود 100 کیلو گرم بر سانتی متر مربع می باشد. پاشش شاتکریت به دیوار به دو صورت پاشش » تر «و » خشک « قابل انجام است. در روش پاشش تر بتن تازه با هوای فشرده مخلوط شده و با پمپ به دیوار بنایی پاشیده می شود. در روش پاشش خشک بتن خشک با هوا مخلوط شده و پس از هدایت به محل، باآب پرفشار نیز مخلوط و سپس به دیوار پاشیده می شود. در روش پاشش خشک، فشار هوا در پمپ برای
طول لوله 30 متر باید حداقل 0.3 مگا پاسکال باشد و برای طولهای بیشتر به ازای هر 05 متر،0.033 مگا پاسکال به فشار اضافه می شود .همچنین فشار آبی که در روش خشک به مخلوط تزریق می شود حداقل 0.1 مگا پاسکال بیشتر از فشار هوای مخلوط است.

تزریق اپوکسی و گروت

برای اجرای این روش بایستی تجهیزات تزریق رزین خریداری شود؛ ولی این روش میزان مصرف رزین را به سبب اینکه تنها نیاز به پر کردن ترك ها وجود دارد، بهینه می کند. برای اجرای این روش نیز حداقل یک نیروی متخصص لازم است. از جمله راههای متداول مقاوم سازی بوده که در این روش برای برگرداندن مقاومت ساختمانهای بنایی غیر مسلح، تركها و حفره های توخالی که به علت تخریب شیمیایی و فیزیکی سطح یا فعالیتهای مکانیکی به وجود آمده است توسط گروت یا اپوکسی پر می شود. برتری این روش نسبت به روش تعمیر سطوح عدم تخریب سطح و به تبع آن حفظ زیبایی معماری و بافت تاریخی ساختمان های بنایی غیر مسلح است. موفقیت این روش به تکنیک تزریق و یکسان بودن مقاومت، مدول الاستیسیته و مشخصات حرارتی گروت با مصالح بنایی موجود بستگی دارد.
برای تركهای کوچکتر از 5 میلیمتر از رزین اپوکسی و برای تركهای بزرگتر و حفره ها میتوان از گروت های 8 میلیمتر پیشنهاد شده که از گروت سیمانی همراه با ماسه استفاده نمود. بررای سوراخهای بزرگتر از 8 میلی متر پیشنهاد شده که از گروت سیمانی که دارای سیمان پرتلند تیپ 3 همراه با مواد منبسط کننده و نسبت آب به سیمان 75 استفاده شود.

دوخت فونداسیون

برای مقاوم سازی کامل ساختمان باید مقاوم سازی فونداسیون آن نیز در صورت نیاز به نحو مطلوبی انجام گردد تا بتواند نیروهای ناشی از زلزله را به خاك منتقل نماید. در صورت عدم مقاومت کافی فونداسیون تحت لنگرهای خمشی و نیروهای برشی وارده از طرف سازه دچار گسیختگی می گردد. همچنین در صورت عدم کفایت سطح تماس فونداسیون با خاك زیر آن احتمال تسلیم شدن خاك و در نتیجه ایجاد نشست ماندگار خاك زیر پی افزایش می یابد. برای تقویت فونداسیون موجود می توان شبکه هایی از آرماتور در اطرف پی موجود در نواحی ضعیف قرار داد و بتن ریزی نمود. اتصال فونداسیون الحاقی به فونداسیون جدید توسط آرماتورهای دوخت صورت می گیرد. از آن جاییکه مصالح لازم برای اجرای این روش به آسانی پیدا می شود و اجرای آن نیز بسیار راحت است، هزینه این روش بسیار پایین است. برای اجرای این روش نیروی متخصص لازم نیست و حتی معمارهای محلی در روستاها نیز قادر به اجرای آن هستند و این مسائل این روش را به عنوان روشی آسان برای مقاوم سازی دیوارهای بنایی ترك خورده مبدل کرده است.

استفاده از روش مقاوم سازی با مصالح FRP

سابقه استفاده از مصالح در صنعت ساختمان کشور ایران به حدود یک دهه می رسد اما امروزه استفاده از کامپوزیت های با زمینه پلیمری در بهسازی سازه ها از رشد قابل توجهی برخوردار بوده است که دلیل اصلی آن نیاز به افزایش عمر بهره برداری و ارتقای اساسی زیرساخت ها در تمامی نقاط دنیا می باشد.
الیاف FRP می توانند توسط روش های دستی، دورپیچی با دستگاه مکانیزه، دستگاه آغشته ساز الیاف و…
بر روی المان های مورد نظر نصب گردند.
1. آماده سازی سازه مقاوم سازی: قبل از هرگونه اقدام به تقویت با ورقه های FRP بایستی در صورت نیاز بتن تخریب شده را جدا کرده و در صورت رسیدن به آرماتور خورد شده اقدامات مربوط به ترمیم و یا تعویض آن ها را صورت دهیم.
2. به کار بردن آستری یا پرایمر FRP: برای افزایش چسبندگی و جلوگیری از جدایش ورقه FRP از لایه چسب یا رزین اپوکسی بین بتن و ورقه، با غلتک یک لایه اپوکسی FRP با لزجت کم به طور موضعی روی سطح مورد نظر به عنوان پرایمر می مالند.
3. بتونه کردن سطح مقاوم سازی: یک لایه چسب FRP با ویسکوزیته بالا برای پرکردن خلل و فرج و فرورفتگیها در محلهای مورد نیاز به کار برده می شود. چسبندگی مناسب الیاف یا لمینت FRP با اجرای مستقیم مصالح ترمیم بر روی لایه زیرین که به درستی آماده شده است حاصل می شود.
4. بریدن شیت بر روی یک سطح تمیز و آماده که عاری از هر گونه آلودگی، چسب و ناصافی است ورقه FRP مطابق مشخصات و جزئیات ارائه شده بریده می شود.
5. اشباع کردن الیاف FRP: در پروژه های بزرگ مقاوم سازی ورقه ها با دستگاه های گرداننده خاص در کارخانه اشباع می شوند و لایه اپوکسی یا ماتریس رزین به آن اضافه می شود و فقط کافی است در محل مورد نظر چسبانده شود ولی در کارهای کوچکتر در محل کارگاه رزین FRP روی سطح موردنظر مالیده شده سپس ورقه FRP خشک و بدون چسب بر روی سطح چسبانده می شود.
6. نظارت بر کنترل کیفیFRP: در زمان عمل آوری 2 تا 6 ساعت بسته به شرایط حاکم، سطح مقاوم سازی شده با FRP چک و کنترل می شوند تا هیچ گونه حباب هوا بین لایه FRP و بتن حبس نشده باشد و خم شدگی یا بیرون زدگی وجود نداشته باشد.
7. اطمینان از کیفیت اجرای مقاوم سازی باFRP: گزارش های کنترل کیفیت تهیه شده و به خوبی نگهداری می شوند تا اطمینان از اجرای موفقیت آمیز ترمیم، تقویت و تعمیر با FRP حاصل شود.
8. لایه رویه FRP: پس از عمل آوری و نظارت بر کیفیت اجرای مقاوم سازی، ورقه های FRP به منظور حفاظت، نگهداری و حفظ زیبایی و معماری با یک لایه بتن رویین یا ماده ای دیگر پوشانده می شوند.

 

منبع : افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , ,
تاریخ : شنبه 13 مرداد 1397
بازدید : 61
نویسنده : افزیر

 

با توجه به زلزله‌خیز بودن کشور ایران احیای ساختمان‌های آسیب‌دیده در کنترل بحران پس از زلزله و همچنین حفظ سرمایه ملی مؤثر از مسائل مهم و ضروری می‌باشد. زلزله به همه سازه‌ها آسیب وارد خواهد کرد که گاه این آسیب همراه با تخریب کامل خواهد بود و گاه با تخریب قسمتی از ساختمان خواهد بود که این تخریب خود به طرق مختلفی رخ می‌دهد که در اکثر موارد می‌شود با مقاوم سازی و ترمیم سازه‌ها کاربری آن را دوباره احیا کرد. حال به چندین روش این مقاوم‌سازی در سازه‌های فولادی آسیب‌دیده زلزله می‌پردازیم.

انتخاب روش مناسب برای مقاوم‌سازی سازه های فولادی تخریب شده در زلزله

دو روش عمده برای ارتقاء شرایط موجود به منظور مقابله با آثار مخرب زلزله به صورت زیر است:

کاهش دادن نیروی زلزله وارد بر ساختمان

نیروی زلزله وارد بر ساختمان با وزن آن نسبت مستقیم دارد، بنابراین با کاهش وزن ساختمان می‌توان نیروی زلزله وارد بر ساختمان را کم کرد،برای این منظور می‌توان از طریق تبدیل کردن دیوارهای سنگین به دیوارهای سبک،استفاده از بتن سبک سازه‌ای، سبک کردن سقف‌ها و کم کردن طبقات اقدام کرد.

افزودن سیستم سازه‌ای جدید برای مقابله با نیروی زلزله

یکی از راه‌های بسیار مؤثر برای مقابله با نیروی زلزله، افزودن سیستم‌های سازه‌ای جدید به ساختمان می‌باشد. این روش در سالیان اخیر توجه زیادی را به خود جلب کرده است و می‌توان مهم‌ترین روش‌های قابل انجام را به شرح زیر نام برد:

  • افزودن سیستم دیوار برشی در یک قاب ساختمانی بتن آرمه با یا بدون دیوار برشی
  • استفاده از مهاربندی‌های هم‌مرکز (CBF)
  • استفاده از مهاربندی‌های غیر هم‌مرکز (EBF)
  • استفاده از میانقاب‌ها
  • استفاده از بادبندهای میراگر ویسکو الاستیک

لازم به توضیح است که استفاده از هر یک از روش‌های فوق به تنهایی یا به صورت ترکیبی با روش‌های دیگر منوط به مطالعه کامل سازه می‌باشد و باید مورد به مورد بررسی گردد.

تعمیر و تقویت لرزه‌ای اعضای ساختمانی موجود

دورپیچ کردن با فولاد، افزایش سطح مقطع بتن با بتن‌ریزی و اضافه کردن آرماتور، استفاده از صفحات فولادی، استفاده از آرماتور خارجی، تزریق اپوکسی، بخیه زدن، پیش تنیدگی خارجی و استفاده از روش‌ها و مصالح نوین مانند میراگرها، سیمان الیافی، مواد مرکب سیمانی وFRP ها از جمله روش‌هایی هستند که اعضای ساختمانی بسته به درجه مقاومت ساختمان در برابر زلزله، سطح خسارت محتمل، نوع اعضاء و اتصالات آن‌ها  می‌تواند به وسیله آن‌ها تعمیر و تقویت شوند. روش‌های فوق‌الذکر به جز روش‌های استفاده از مصاح نوین، از روش‌های متداول و مرسومی می‌باشند که برخی از آن‌ها سالیان درازی است که برای تقویت سازه‌های فولادی استفاده می‌گردد.

در این روش از ورق فولادی نازک جهت پوشش ستون‌ها استفاده می‌شود. پوشش ستون‌ها به صورت کامل بوده و دورتادور ستون توسط ورق‌های فولادی که ضخامتی بین 4 تا 8 میلی‌متر دارند پوشیده می‌شود.این ورق‌ها به طور پیوسته به یکدیگر جوش داده می‌شوند. پوشش استوانه‌ای شکل حاصل بر روی بتن در مهار تنش‌های محیطی ستون عملکرد مناسبی از خود نشان داده است. در صورت مستطیل بودن ستون می‌توان دو ورق L شکل ویل چهار تسمه فولادی قائم را به یکدیگر(توسط چهار نبشی)جوش داد. در این روش شکل‌پذیری و مقاومت محوری ستون به طور موضعی افزایش می‌یابد.فضای خالی بین بتن و پوشش فولادی توسط پرکننده‌هایی نظیر دوغاب سیمان منبسط شونده و یا بتن  اشغال می‌گردد. این روش ابعاد سازه را تغییر نمی‌دهد ولی وزن سازه با استفاده از ورق‌های فولادی افزایش قابل ملاحظه‌ای می‌یابد.

افزایش سطح مقطع با بتن‌ریزی و اضافه کردن آرماتور

از این روش نیز برای ستون‌هایی که دچار آسیب‌دیدگی شده باشند استفاده می‌شود. این روش ظرفیت باربری ستون را افزایش داده و در عین حال می‌تواند مرمت عضو را نیز شامل گردد. استفاده از این روش بر حسب موقعیت ستون و فضاهای قابل دسترسی اطراف ستون می‌تواند در یک،دو،سه یا هر چهار طرف ستون انجام گیرد. مسلح کننده بتن در این روش می‌تواند پروفیل، ورق فولادی و یا آرماتور باشد. با این روش مقاومت محوری وبرشی ستون افزایش می‌یابد ولی مقاومت خمشی ستون به علت عدم عبور مسلح کننده‌ها از سقف افزایش نمی‌یابد. در صورت تقویت  نمودن ستون بین طبقات ممکن است کل سازه رفتار نامناسبی از خود نشان دهد و کمکی در برابر زلزله ننماید. از این‌رو توصیه می‌شود دیوار برشی هم در این‌گونه مواقع به سیستم اضافه شود و یا آرماتور طولی تقویتی از میان سوراخ‌های ایجاد شده در دال سقف عبور نموده و در محل اتصال تیر به ستون بتن‌ریزی گردد.

تزریق اپوکسی

عمل تزریق جهت مرمت تیرهای با ترک‌های جزئی به کار می‌رود. در صورت تمیز بودن سطوح تماس بتن می‌توان با تزریق رزین‌های اپوکسی  با روانی بالا مقاومت کشششی-برشی سازه را بهبود بخشید. چون ترک در اثر تنش‌های کششی به وجود می‌آید، چنانچه این تنش‌ها پس از تعمیر  ترک باز هم بوجود آیند ترک مجدد ایجاد خواهد شد. چنانچه برطرف کردن این تنش‌ها غیر ممکن باشد توصیه می‌شود که در طول سطح ترک یک برش به عنوان درز انقباض یا جابه‌جائی استفاده شود.

استفاده از آرماتور خارجی

در این روش آرماتورهای معمولی از بیرون به مقطع تیر بسته شده و در دو انتهای آن مهار می‌گردند. البته لازم به ذکر است که مهار آرماتورها در انتهای تیر بسیار مهم و حساس بوده و از نظر اجرا مشکل و پرهزینه می‌باشد. میلگردهای خارجی را می‌توان با عبور دادن از سوراخ‌های صفحه‌ای که پشت ستون تعبیه شده و پیچ کردن آن‌ها به صفحه مهار نمود. البته این راه از لحاظ اجرا به دلیل نیاز احتمالی به سوراخ کردن ستون مشکل و یا حتی غیر ممکن خواهد بود. به همین سبب روش دیگری پیشنهاد شده است، بدین صورت که با پوشش محل اتصال تیر و ستون به‌وسیله ورق و جوش دادن یک صفحه فولادی ضخیم به آن می‌توان میلگردها را به راحتی مهار کرد. برای اینکه میلگرد تحت اثر وزن خود دچار خیز نشود با رزوه کردن انتهای میلگرد می‌توان آن‌ها را به صفحه فولادی پیچ نمود و با پیچاندن مهره، انتهای آن را تحت کشش قرار داد. برای اینکه میلگردها از جای خود نلغزند می‌توان پس از پیچاندن مهره دو انتهای آن را به صفحات فولادی جوش داد.

استفاده از پیش تنیدگی خارجی

این روش از طریق ایجاد پیش تنیدگی در کابل‌هایی که از بیرون در امتداد طول سازه تعبیه می‌گردند انجام می‌شود. تاریخچه استفاده از پیش تنیدگی خارجی به بعد از جنگ جهانی دوم بر می‌گردد که به علت بکارگیری نامناسب آن، نتیجه خوبی به دست نیامد. بین سال‌های1960 تا 1970 تنها تعداد محدودی پل با استفاده از این روش تقویت شدند. این روش به چندین علت از جمله مسائل مربوط به حفاظت کابل در برابر خوردگی مورد توجه قرار گرفت. اما بعد از چندین سال این روش در فرانسه با شیوه‌ای مناسب و مطلوب توسعه داده شد و در حال حاضر به عنوان روشی جامع در تقویت اعضای سازه‌ای کاربرد دارد. امروزه عملاً تمام پل‌های بزرگ با این روش مقاوم می‌شوند. تجربه مقاوم‌سازی پل‌ها با این روش، طراحان را با تعریف و کاربرد پیش تنیدگی خارجی در طراحی سازه‌ها آشنا ساخت. با وجودی که این روش در ابتدای امر به عنوان یک روش مقاوم‌سازی مطرح گردید، اما پس از فراموشی در یک دوره کوتاه‌مدت، دوباره با کاربردی جدید در طراحی سازه‌ها، علاوه بر کاربرد به عنوان یک روش مقاوم‌سازی مطرح گردید. کمیته آیین‌نامه ACI224 پیش تنیدگی خارجی را به عنوان یک روش تحلیلی برای مقاوم‌سازی مطرح کرده است. در بکارگیری این روش باید به سه موضوع توجه ویژه مبذول داشت :

1) طرح مهارها

2) نصب انحراف دهنده‌ها

3) محافظت کابل‌ها در برابر خوردگی

امروزه مقاوم‌سازی با کابل‌های پیش‌تنیده خارجی یک روش بسیار کاربردی می‌باشد. اما بکارگیری آن نیازمند مهارت خاص و استفاده از تجهیزات مدرن است، لذا انجام آن، محدود به کشورهای پیشرفته و در حال توسعه می‌باشد.

استفاده از صفحه فولادی

این روش پس از پیشرفت صنعت شیمی و ساخت چسب‌های اپوکسی در حدود 30 سال پیش مطرح شد و در حال حاضر در تمام دنیا مورد استفاده قرار می‌گیرد. اگرچه کاربرد آن در آمریکای شمالی محدود شده است. در این روش صفحات فولادی توسط چسب اپوکسی به زیر تیر چسبانده می‌شوند. در این صورت عملاً افزایشی در عمق عضو و وزن مرده ایجاد نخواهد شد. علاوه بر اتصال با چسب، می‌بایست انتهای ورق‌ها را با روش‌هایی ویژه به تیر متصل نمود تا از لغزش و جدا شدن آن‌ها از تیر جلوگیری به عمل آید. روش مذکور متنوع، انعطاف‌پذیر، اقتصادی و مناسب است. آنچه در این روش باید کنترل گردد محکم شدن ورق، محافظت در مقابل حریق، شناخت خواص اپوکسی و آماده‌سازی درست سطح بتن و فولاد می‌باشد.

رفتار مطلوب سیستم مرکب حاصل بستگی بسیاری به چسبندگی لایه بین بتن و صفحه فولادی دارد. لذا آماده‌سازی دقیق سطح تماس بتن و صفحه فولادی از ملزومات کاربرد این روش است. محدودیت‌هایی نیز در انتخاب ضخامت ورق وجود دارد چرا که ضخامت نسبتاً زیاد ورق فولادی می‌تواند ترک افقی و جدا شدن آن از بتن تیر را سبب شود. با افزایش عرض ورق، احتمال شکست در چسبندگی و با افزایش ضخامت چسب، احتمال لغزش بین بتن و ورق بیشتر می‌شود. ورق‌های تقویتی فولادی با نسبت عرض به ضخامت (b/t) کمتر از 50 ، به علت تولید تنش‌های بیشتر در مجاورت انتهای صفحات، با شکست زودرس قبل از تخریب خمشی شکل‌پذیر از بین می روند. یادآور می‌شود این روش در محلی از تیر که پوشش بتن روی آرماتور از بین رفته باشد قابل‌اجرا نیست.

امروزه جهت مقاوم‌سازی سازه‌های موجود ،روش‌ها و مصالح نوینی که نتیجه تحقیقات زیادی می‌باشند وجود دارند که در ذیل به چند مورد از آن‌ها بطور خلاصه اشاره شده است:

میراگر اصطکاکی

این میراگر به عنوان قسمتی از سیستم مهاربند جانبی،شامل صفحات فولادی می‌باشد که به یکدیگر بولت شده‌اند و عموماً در قسمت وسط مهاربند x شکل قرار می‌گیرد. سیستمی نظیر این میراگرها وجود دارد که می‌توان آن را بوسیله اتصالاتی در محل تیر-ستون تعبیه نمود. این میراگرها انرژی زلزله را بواسطه لغزش صفحات فولادی بر روی یکدیگر به انرژی گرمایی تبدیل می‌نماید.

سیمان الیافی یا سیمان مسلح شده با الیاف (FRC)

این ترکیب تشکیل شده است از یک شبکه الیاف شیشه با مقاومت بالا و یک لایه نازک سیمان مسلح شده به الیاف. با اضافه نمودن پوشش FRC بر روی دیوار مصالح بنایی غیر مسلح ،مقاومت و شکل‌پذیری آن بدون افزایش سختی، افزایش می‌یابد.

مواد مرکب سیمانی

مواد مرکب سیمانی شکل‌پذیر نظیر (ECC (Engineered Cementitious composites  نمونه‌ای از نسل جدید مصالح می‌باشند که مزیت‌ها و قابلیت‌های زیادی از قبیل جذب انرژی بالا ،مقاومت کششی و فشاری زیاد، قابلیت شکل‌دهی، قابلیت اتصال با بولت ،جوش و گروت برای استفاده در مقاوم‌سازی ساختمان‌های موجود دارند.

رفتار شبه سخت‌شوندگی کرنش (Pseudo Strain Hardening) در پاسخ تنش، این مصالح را منحصر به فرد ساخته است.

مواد تشکیل‌دهنده آن عبارتند از آب،سیمان ،ماسه، الیاف و مقداری مواد شیمیایی افزودنی. بطور کلی به دلیل مقدار کم الیاف مورد نیاز (در حدود2% حجم) نحوه مخلوط کردن آن، شبیه بتن می‌باشد. جهت دستیابی به رفتار منحصر به فرد این مصالح، می‌بایستی از الیاف‌هایی با مشخصات خاص استفاده نمود.

کاربرد مصالح FRP در مقاوم‌سازی سازه‌هاي فولادي

کاربردهاي بسیار زیادي از مصالح FRP چسبانده شده به سازه‌های بخصوص فلزی فولاد و چدن وجود دارد. ابتدا به چند مورد از کاربرد مصالح FRP در سازه‌های فلزي اشاره می‌کنیم و در نهایت به تشریح کاربرد لمینیتهاي CFRP در تقویت تیرورق‌های فولادي خواهیم پرداخت.

کاربرد FRP در تیرهاي کامپوزیتی و تیر ورق‌های فولادي

تقویت تیرهاي فولادي با مصالح کامپوزیتی را به دو قسمت تقویت تیرهاي سالم و تیرهاي آسیب‌دیده می‌توان تفکیک کرد. بیشتر تحقیقات انجام شده در زمینه مقاوم‌سازی تیرهاي فولادي سالم با مواد پلیمر کامپوزیت، مربوط به تیرهاي فولادي مرکب با دال بتنی می‌باشد. این نوع تیرها کاربرد فراوانی در سازه‌های پل و ساختمان دارند. مزیت این نوع تیرها در استفاده فولاد در کشش و بتن در فشار می‌باشد و علاوه بر این دال بتنی وظیفه مهار جانبی بال فشاري را نیز بعهده دارد. تحقیقات انجام شده نشان‌دهنده کاراییروش مقاوم سازی تیرهاي مختلط فولاد و بتن با مواد FRP در بهبود مقاومت نهایی آنها میباشد اما سختی آنها به مقدار کمی افزایش مییابد. براي نمونه توکلی زاده و سعادتمنش تحقیقات تحلیلی و تجربی روي تیرهاي فولادي 30×W14  مختلط با بتن انجام دادند. آنها دو ردیف ورق CFRP به عرض 57 میلیمتر و ضخامت 17.2 میلیمتر روي بال کششی در دو طرف جان چسباندند. ورق‌هاي CFRP از سه نوع یک لایه، سه لایه و پنج لایه مورد استفاده قرار گرفتند. آزمایش خمش چهارنقطهاي روي تیرهاي به طول 4780 میلی‌متر انجام دادند و افزایش بار نهایی براي نمونه‌هاي مقاوم شده با یک لایه، سه لایه و پنج لایه CFRP به ترتیب 44 ،51 و 76 درصد بوده است. همچنی مقدار کرنش کششی در بال ها در یک سطح بار مشخص، براي نمونه‌هاي یک لایه، سه لایه و پنج لایه حدود 21 ،39 و 53 درصد کاهش یافتند و نیز مشاهده شد در نمونه‌هاي با یک لایه CFRP ، مقدار تنش موجود در ورق تقویتی بعد از بار نهایی حدود 75 درصد کاهش یافت، در حالیکه مقدار متناظر براي ورقه‌هاي پنج لایه در حدود 42 درصد بوده است.

استفاده از ورق روسری و زیر سری مضاعف

در صورتی که از جوش ورق های زیر سری و رو سری به ستون اطمینان نباشد، استفاده از ورق های زیر سری و روسری مضاعف می تواند در برنامه کار قرار گیرد. در صورتی که هیچ اطمینانی از جوش ورق روسری موجود به ستون نباشد و یا این جوش از ین رفته باشد، ضخامت ورق روسری و زیر سری باید برای لنگر خمیی تیر طراحی شود. اما اگر اضافه کردن وقت زیر سری و رو سری به منطور تقویت وضعیت موجود باشد، ضخامت آن با توجه به های موجود تعیین می گردد.

استفاده از ماهیچه

اضافه کردن یک مماهیچه باعث انتقال مفصل خمیری از بر ستون به خل تیر می شود. اضافه نمودن ماهیچه در صورت امکان تنها در بال تحتانی تیر نصب شود.

استفاده از مقاطع Tشکل

با استفاده از مقطع T شکل نیز می توان اتصال فولادی را بهسازی لرزه ای نمود. در بعضی از موارد، مقطع را تنها در بال پاییینی اتصال اجرا می نمایند که یا استفاده از این روش می توان بدون تخریب دال، ذاتصال را بهسازی لرزه ای نمود.

روش‌های مقاوم سازی شالوده‌ها

مقاوم نمودن شالوده‌ها به دو روش زیر انجام می‌گردد.

الف) افزایش مقاومت تکیه‌گاه(خاک) شالوده بوسیله ایجاد ‍پی‌های اضافی بزرگتر زیر پی‌های موجود

ب) افزایش وزن شالوده بوسیله پی‌های اضافی و بستن آن‌ها به پی‌های موجود و غیره

 

برای مقاوم سازی سازه ها و ساختمان ها روش های زیادی وجود دارد که برخی از روش های رایج درمقاوم سازی سازه ها عبارتند از:

مقاوم سازی با FRP

بطور کلی مقاوم‌سازی سازه‌های فولادی موجود برای تقویت آن‌ها به منظور تحمل بارهای وارده، بهبود نارسایی‌های ناشی از فرسایش، افزایش شکل پذیری سازه یا سایر موارد با استفاده از مصالح مناسب و شیوه‌های اجرایی صحیح انجام می­گردد. امروزه استفاده از الیاف FRP به‌عنوان یک ضرورت در جایگزینی مصالح سنتی و شیوه‌های موجود شناخته می‌شوند. سیستم اف آر پی FRP  بدین صورت تعریف می­شود که الیاف و رزین‌ها برای ساخت چند لایه مرکب مورد استفاده قرار می‌گیرند، به نحوی که رزین‌های مصرفی (رزین اپوکسی) به منظور چسباندن چند لایه مرکب به سطح بتن زیرین و پوشش‌ها به منظور محافظت مصالح ترکیب شده استفاده می‌شوند. استفاده از FRP  به دلیل وزن کم‏‏، سرعت اجرای بالا‏، مقاومت بالا و عدم ایجاد محدودیت معماری بسیار مورد توجه می‌باشد.

مقاوم‌سازی با اضافه نمودن دیوار برشی و یا بادبند

استفاده از دیوار برشی بتنی در  ساختمان‌ها یکی دیگر از روش‌های مقاوم‌سازی ساختمان می‌باشد. به علت سختی بیشتر دیوار برشی نسبت به بادبند، تعداد دهانه‌های لازم برای تعبیه دیوار برشی کمتر از دهانه‌های لازم برای بادبند است که در نتیجه طرح مقاوم‌سازی مشکلات کمتری در زمینه معماری بوجود می‌آورد. برای اتصال دیوار به ستون باید از خاموت‌های دورپیچ ستون یا بولت به عنوان برش گیر در ارتفاع ستون استفاده کرد. همچنین برای اتصال دیوار به سقف هم باید تمهیداتی اندیشید. نکته مهم دیگری هم که در مورد استفاده از دیوار برشی باید به آن توجه کرد این است که به علت نیروی زیادی که در پی دیوار برشی بوجود می‌آید، احتمالا نیاز به شمع دارد تا بتواند نیرو‌ها را به زمین منتقل کند.

مقاوم‌ سازی با استفاده از جداگرهای لرزه‌ای

نصب جداسازهای لرزه‌ای در تراز پایه ساختمان، با هدف جداسازی حرکتی بین سازه و زمین صورت می‌گیرد. جداسازهای لرزه‌ای، المان‌هایی هستند که سختی جانبی آن‌ها نسبت به سختی محوری­شان بسیار کمتر می‌باشد، لذا با وقوع زلزله، این المان­ها میبایستی مانع انتقال نیرو به سازه‌ی اصلی­ شوند و سازه‌ی اصلی یک حرکت صلب را در حین وقوع لرزش­های زمین تجربه  نماید. عملکرد جداگرها فقط در محدوده خاصی از جرم و ارتفاع ساختمان مطلوب است و به همین دلیل این روش بصورت خیلی محدود و فقط برای ساختمان‌های دارای وزن و ارتفاع مناسب مؤثر بوده و به همین دلیل کمتر از سایر روش‌ها در جهان مورد استقبال کارشناسان قرار گرفته است.

مقاوم سازی با استفاده از سیستم‌های جاذب انرژی (دمپر)

در روش­های کنترل غیر فعال سازه نظیر استفاده از مستهلک کننده‌های ویسکوز و ویسکوالاستیک، جذب انرژی حاصل از حرکات نیرومند زمین توسط مستهلک کننده‌ها صورت گرفته و به سیستم سازه اجازه داده نمی­شود که وارد ناحیه غیر خطی گردد. این امر موجب می­ شود که مقاومت سازه در برابر زلزله‌های با دوره بازگشت طولانی‌تر (که طبیعتاً شدیدتر نیز می‌باشند) بیشتر گردد یا به تعبیر دیگر احتمال فروریزش سازه در برابر این زلزله‌ها کاهش می‌یابد. سیستم‌های جاذب یا مستهلک کننده انرژی  (Dampers ) بر پایه افزایش ضریب میرایی ساختمان بنا شده‌اند. مهمترین تأثیر میرایی، کاهش دامنه نوسان و پاسخ ساختمان نسبت به نیروهای وارده می‌باشد و بدین وسیله قسمت عمده‌ای از انرژی ارتعاشی را قبل از رسیدن پاسخ سازه به حد نهایی به هدر می‌دهند. اتلاف کننده‌های انرژی ممکن است در مهاربندی‌ها، اتصالات و اجزای غیر سازه‌ای و یا دیگر مکان‌های مناسب در ساختمان‌های موجود قرار داده شوند، لیکن ساده‌ترین و  پرکاربردترین آن‌ها استفاده از میراگر در مهاربندها می‌باشد که می­توان از آن‌ها در تمامی طبقات ساختمان سود جست. در برخی از انواع میراگرها ملاحظات زیبایی نیز مدنظر قرار گرفته شده است تا چنانچه بصورت نمایان بکار برده شوند مشکلی از لحاظ معماری ایجاد ننمایند.

منبع : شرکت مقاوم سازی افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , سازه فولادی , پوشش ضد حریق , ,
تاریخ : پنج شنبه 23 آذر 1396
بازدید : 107
نویسنده : افزیر

الیاف کربن CFRP

الیاف کربن CFRP یکی از پرکاربرد ترین الیاف در صنعت مقاوم سازی و کامپوزیت است. این الیاف بیشترین مقدار ضریب ارتجاعی را نسبت به الیاف شیشه و کولار دارد. ضریب انبساط گرمایی خطی این نوع الیاف در دماهای بالا و پایین بسیار کم می باشد که این مساله باعث پایداری ابعادی الیاف کربن در دماهای متفاوت می‌گردد. در بین مزایای مختلف الیاف کربن، برجسته ترین آنها مقاومت کششی فوق العاده نسبت به وزن آن است (کربن تقریبا یک سوم فولاد وزن و ۵ الی ۱۰ برابر آن مقاومت دارد). علاوه بر آن الیاف کربن  مقاومت خوبی در برابر خستگی دارد. دوام و عمر طولانی در برابر مواد شیمیایی و نفوذ ناپذیری در برابر اشعه x از بارزترین خصوصیات الیاف کربن CFRP به شمار می‌رود. همچنین الیاف کربن رسانایی الکتریکی بسیار خوبی دارد و قابلیت بافت و تولید پارچه، ساخت کامپوزیت‌های سبک و مستحکم CFRP و پایداری در برابر حرارت آن را از سایر مواد مهندسی متمایز می‌سازد. فیبر کربن عنصری با دانسیته  ۲٫۲۷g/cm3 است و اشکال بلوری مختلفی دارد. رشته الیاف کربن که از فیبرهای کربن تشکیل می‌گردد، به مراتب نازکتر از موی انسان در قطر بین ۶ تا ۱۰ میکرومتری می‌باشند. علیرغم حجم بالای استفاده از آنها، قیمت الیاف کربن هنوز نسبتاً بالا است. این مسئله باعث محدودیت فروش کامپوزیت CFRP می‌گردد.

 منبع:افزیر



:: موضوعات مرتبط: نصب و اجرای FRP , ,
:: برچسب‌ها: CFRP , کاربرد کامپوزیت cfrp , الیاف کربن cfrp , کامپوزیت cfrp ,
تاریخ : پنج شنبه 23 آذر 1396
بازدید : 139
نویسنده : افزیر

frp چیست؟

به صورت کلی FRP ترکیبی از دو ماده است. بخش اول آن ماتریس بوده و جز دیگر آن الیاف است. ماتریس خود از برخی مواد شیمیایی مانند رزین‌های اپوکسی و پلی استر تشکیل شده است. این مواد برای اقتصادی شدن و بهبود خواص، دارای افزودنی‌هایی هستند. نقش الیاف، تامین مقاومت مکانیکی کافی در FRP است. در حالی که ماتریس نقش باربری مکانیکی ندارد و تنها باید از الیاف در مقابل خوردگی و آسیب دیدن محافظت نماید. همچنین انتقال بار در FRP به کمک ماتریس انجام می‌شود. از دیگر کاربردهای ماتریس، کنترل کمانش موضعی الیاف تحت فشار است. بیشتر حجم FRP را الیاف تشکیل می‌دهند. عواملی مختلفی در بهره‌وری الیاف FRP تاثیرگذار هستند. از جمله این عوامل می‌توان به موارد زیر اشاره نمود:

  • نوع الیاف
  • مقدار الیاف
  • نحوه قرارگیری الیاف
  • ضریب انتقال حرارت
  • این عوامل در مقاومت کششی، خمشی، برشی، خستگی و مقاومت در برابر الکتریسیته بسیار موثر هستند. همچنین این عوامل در میزان قیمت تمام شده محصول نیز بسیار پر اهمیت هستند.

الیاف FRP به دو شکل الیاف ورق یا لمینت FRP و میلگرد یا پروفیل FRP موجود است. پروفیل و میلگرد FRP به روش پالتروژن ساخته می‌شوند. در این روش دسته‌هایی از الیاف پس از آغشته شدن با رزین پس از عبور از یک قالب در کنار هم قرار گرفته و یک پروفیل دارای مقطع ثابت را به وجود می‌آورند. از عمده‌ترین مزایای روش پالتروژن چندمنظوره بودن آن و کاربردهای گوناگون آن در صنایع مختلف است. به عبارتی صرفاً با تغییر قالب دستگاه میتوان علاوه بر محصولاتی که در صنعت ساختمان کاربرد دارد، همانند انواع آرماتورها، محصولات گوناگون دیگری در حوزه‌های مختلف از جمله تسمه‌های ماشین نساجی، ریلها، محافظ اتوبانها، چارچوب پنجره‌ها و درها، تیرهای با مقطع I شکل، نبشی‌ها و غیره تولید نمود. عمر محصولات پالتروژنی بسیار بالاست و سرعت تولید یک محصول پالتروژنی نیز نسبتاً زیاد است. از نظر قیمت نیز با وجود اینکه یک تیر پالتروژنی قیمت ظاهری بیشتری نسبت به نمونه مشابه آهنی دارد؛ ویژگی هایی مانند مقاومت بالا در برابر خوردگی و زلزله و دوام آن می‌تواند توجیه‌کننده قیمت اولیه بالای آن باشد. در مصارف عمومی مانند ساخت سازه‌ها اگر نیاز به مقاومت در برابر خوردگی و زلزله وجود داشته باشد، استفاده از تیرهای پالتروژنی می‌تواند توجیه اقتصادی نیز داشته باشد.

منبع:افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , ,
:: برچسب‌ها: frp , کامپوزیت frp , الیاف frp , الیاف مقاوم در برابر خوردگی ,
تاریخ : دو شنبه 16 مرداد 1396
بازدید : 359
نویسنده : افزیر

کامپوزیت های FRP به عنوان روشی مناسب برای ترمیم، تقویت و بهسازی لرزه ای سازه ها شناخته می شود. عملکرد صحیح این مصالح در جهت افزایش مقاومت و شکل پذیری سازه مورد نظر نیازمند نصب و اجرای ماهرانه کامپوزیت های FRP توسط نیروی مجرب و متخصص می باشد. علاوه بر به کارگیری تکنیک های حرفه ای نصب FRP پس از اجرا به منظور اطمینان از عملکرد صحیح و کارآمد مصالح FRP تست هایی انجام می شود. که از جمله می توان به تست کشش FRP و تست Pull-off اشاره کرد. که به ترتیب مقاومت کششی FRP و چسبندگی آن را می سنجند. آزمایش های مذکور طبق دستور استانداردها و نشریه های بین المللی FRP انجام خواهند شد.

منبع:افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , ,
:: برچسب‌ها: مقاوم سازی , FRP , تست FRP ,
تاریخ : یک شنبه 15 مرداد 1396
بازدید : 137
نویسنده : افزیر

با توجه به گسترش روزافزون استفاده از کامپوزیت های FRP در مقاوم سازی، بهسازی و ترمیم سازه ها انتخاب روش اجرای مناسب کامپوزیت های FRP نیز امری مهم و قابل تامل است. دو شیوه مطرح در اجرای کامپوزیت های FRP روش تسلیح با اتصال خارجی EBR (چسباندن ورقه های FRP بر سطوح خارجی سازه ها) و روش نصب در نزدیک سطح NSM است که بر اساس ایده کارگذاشتن مصالح مقاوم کننده در شیارهای تعبیه شده درسطح تیرها شکل گرفته است. با گسترش صنعت مقاوم سازی مشخص شد که روش رایج EBR دارای کاستی هایی مثل جدا شدن ورق FRP، نداشتن عملکرد و مقاومت مناسب در برابر حرارت است. بنابراین روش نصب در نزدیک سطح مورد توجه قرار گرفت. مبنای روش NSM قرار دادن میله یا ورقه های کامپوزیت در شیارهای تعبیه شده در سطح بتن و ایجاد  پیوستگی لازم با اپوکسی است.

منبع:افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , ,
:: برچسب‌ها: مقاوم سازی , FRP , NSM ,
تاریخ : یک شنبه 15 مرداد 1396
بازدید : 155
نویسنده : افزیر

بطورکلی مقاوم سازی سازه های بتنی موجود یا مرمت آنها به منظور تحمل بارهای مضاعف طراحی،بهبود نارسایی های ناشی از فرسایش، افزایش شکل پذیری سازه یا سایر موارد با استفاده از مصالح مناسب و شیوه های اجرایی صحیح بطور متعارف انجام می گردد. استفاده از صفحات فولاد ی به صورت پوشش خارجی، غلاف های بتنی یا فولادی و پس کشیدگی خارجی تعدادی از روش های موجود است. استفاده از  کامپوزیت های FRP از جمله روش های نوین بهسازی سازه است که در سال های اخیر در صنعت مقاوم سازی بسیار مورد توجه بوده است.

منبع:افزیر



:: موضوعات مرتبط: مقاوم سازی , مقاوم سازی با FRP , نصب و اجرای FRP , سازه بتنی , ,
:: برچسب‌ها: مقاوم سازی , ترمیم و بهسازی , FRP , سازه بتنی , طراحی FRP ,

صفحه قبل 1 صفحه بعد

به وبلاگ من خوش آمدید

نام :
وب :
پیام :
2+2=:
(Refresh)

تبادل لینک هوشمند

برای تبادل لینک ابتدا ما را با عنوان شرکت مقاوم سازی افزیر و آدرس afzir.LXB.ir لینک نمایید سپس مشخصات لینک خود را در زیر نوشته . در صورت وجود لینک ما در سایت شما لینکتان به طور خودکار در سایت ما قرار میگیرد.






RSS

Powered By
loxblog.Com